6 research outputs found

    Distinct activation mechanisms trigger the trypanocidal activity of DNA damaging prodrugs

    Get PDF
    Quinone-based compounds have been exploited to treat infectious diseases and cancer, with such chemicals often functioning as inhibitors of key metabolic pathways or as prodrugs. Here, we screened an aziridinyl 1,4-benzoquinone (ABQ) library against the causative agents of trypanosomiasis, and cutaneous leishmaniasis, identifying several potent structures that exhibited EC50 values of <100 nM. However, these compounds also displayed significant toxicity towards mammalian cells indicating that they are not suitable therapies for systemic infections. Using anti-T. brucei ABQs as chemical probes, we demonstrated that these exhibit different trypanocidal modes of action. Many functioned as type I nitroreductase (TbNTR) or cytochrome P450 reductase (TbCPR) dependent prodrugs that, following activation, generate metabolites which promote DNA damage, specifically interstrand crosslinks (ICLs). Trypanosomes lacking TbSNM1, a nuclease that specifically repairs ICLs, are hypersensitive to most ABQ prodrugs, a phenotype exacerbated in cells also engineered to express elevated levels of TbNTR or TbCPR. In contrast, ABQs that contain substituent groups on the biologically active aziridine do not function as TbNTR or TbCPR-activated prodrugs and do not promote DNA damage. By unravelling how ABQs mediate their activities, features that facilitate the desired anti-parasitic growth inhibitory effects could be incorporated into new, safer compounds targeting these neglected tropical diseases

    Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity.

    Get PDF
    3-Nitro-1H-1,2,4-triazole-based acetamides bearing a biphenyl- or a phenoxyphenyl moiety have shown remarkable antichagasic activity both in vitro and in an acute murine model, as well as substantial in vitro antileishmanial activity but lacked activity against human African trypanosomiasis. We have shown now that by inserting a methylene group in the linkage to obtain the corresponding propanamides, both antichagasic and in particular anti-human African trypanosomiasis potency was increased. Therefore, IC50 values at low nM concentrations against both T. cruzi and T. b. rhodesiense, along with huge selectivity indices were obtained. Although several propanamides were active against Leishmania donovani, they were slightly less potent than their corresponding acetamides. There was a good correlation between lipophilicity (clogP value) and trypanocidal activity, for all new compounds. Type I nitroreductase, an enzyme absent from the human host, played a role in the activation of the new compounds, which may function as prodrugs. Antichagasic activity in vivo was also demonstrated with representative propanamides.This work was supported in part by internal funds of the Radiation Medicine Department at NorthShore University HealthSystem. In addition, the Drugs for Neglected Diseases initiative (DNDi) received financial support from the Bill & Melinda Gates Foundation (BMGF) to perform the in vitro screenings against parasites

    Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds

    Get PDF
    A small series of 5-nitro-2-aminothiazole-based amides containing arylpiperazine-, biphenyl- or aryloxyphenyl groups in their core were synthesized and evaluated as anti-trypanosomatid agents. All tested compounds were active or moderately active against Trypanosoma cruzi amastigotes in infected L6 cells and Trypanosoma brucei brucei, four were moderately active against Leishmania donovani axenic parasites while none were deemed active against Trypanosoma brucei rhodesiense. For the most active/moderately active compounds a moderate selectivity against the human infectious parasites was observed. There was a good correlation between lipophilicity (clogP value) versus antileishmanial activity and mammalian cell toxicity with a similar correlation also noted between clogP values and IC50 values against T. cruzi in structurally related subgroups of compounds. Three compounds were more potent as antichagasic agents than benznidazole.This work was supported in part by internal funds of the Radiation Medicine Department at NorthShore University HealthSystem. In addition, the Drugs for Neglected Diseases initiative (DNDi) received financial support from the Bill and Melinda Gates Foundation to perform the in vitro screenings against parasites

    Conserved metallomics in two insect families evolving separately for a hundred million years

    No full text
    Μetal cofactors are required for enzymatic catalysis and structural stability of many proteins. Physiological metal requirements underpin the evolution of cellular and systemic regulatory mechanisms for metal uptake, storage and excretion. Considering the role of metal biology in animal evolution, this paper asks whether metal content is conserved between different fruit flies. A similar metal homeostasis was previously observed in Drosophilidae flies cultivated on the same larval medium. Each species accumulated in the order of 200 µg iron and zinc and approximately ten-fold less manganese and copper per gram dry weight of the adult insect. In this paper, data on the metal content in fourteen species of Tephritidae, which are major agricultural pests worldwide, are presented. These fruit flies can be polyphagous (e.g., Ceratitis capitata) or strictly monophagous (e.g., Bactrocera oleae) or oligophagous (e.g., Anastrepha grandis) and were maintained in the laboratory on five distinct diets based on olive oil, carrot, wheat bran, zucchini and molasses, respectively. The data indicate that overall metal content and distribution between the Tephritidae and Drosophilidae species was similar. Reduced metal concentration was observed in B. oleae. Feeding the polyphagous C. capitata with the diet of B. oleae resulted in a significant quantitative reduction of all metals. Thus, dietary components affect metal content in some Tephritidae. Nevertheless, although the evidence suggests some fruit fly species evolved preferences in the use or storage of particular metals, no metal concentration varied in order of magnitude between these two families of Diptera that evolved independently for over 100 million years.13 page(s
    corecore