31 research outputs found

    Electrically controlled white laser emission through liquid crystal/polymer multiphases

    Get PDF
    White lasers are becoming increasingly relevant in various fields since they exhibit unprecedented properties in terms of beam brightness and intensity modulation. Here we introduce a white laser based on a polymer matrix encompassing liquid crystals and multiple organic chromophores in a multifunctional phase-separation system. The separation of the hydrophilic matrix and the hydrophobic liquid crystals leads to the formation of a complex optically active layer, featuring lasing emission tuneable from blue to red. White laser emission is found with an optical excitation threshold of approximately 12 mJ/cm2. Importantly, an external electric field can be used to control the device emission intensity. White lasers with low-voltage (≤10 V) controllable emission might pave the way for a new generation of broadband light sources for analytical, computational, and communication applications

    3D photo-responsive optical devices manufactured by advanced printing technologies

    Get PDF
    Photonic components responsive to external optical stimuli are attracting increasing interest, because their properties can be manipulated by light with fast switching times, high spatial definition, and potentially remote control. These aspects can be further enhanced by novel architectures, which have been recently enabled by the availability of 3D printing and additive manufacturing technologies. However, current methods are still limited to passive optical materials, whereas photo-responsive materials would require the development of 3D printing techniques able to preserve the optical properties of photoactive compounds and to achieve high spatial resolution to precisely control the propagation of light. Also, optical losses in 3D printed materials are an issue to be addressed. Here we report on advanced additive manufacturing technologies, specifically designed to embed photo-responsive compounds in 3D optical devices. The properties of 3D printed devices can be controlled by external UV and visible light beams, with characteristic switching times in the range 1-10 s

    Amplified spontaneous emission of Rhodamine 6G embedded in pure deoxyribonucleic acid

    Get PDF
    Deoxyribonucleic acid (DNA) is commonly viewed as a genetic information carrier. However, now it is recognized as a nanomaterial, rather than as a biological material, in the research field of nanotechnology. Here, we show that using pure DNA, doped with rhodamine 6G, we are able to observe amplified spontaneous emission (ASE) phenomenon. Moderate ASE threshold, photodegradation, and reasonable gain coefficient observed in this natural host gives some perspectives for practical applications of this system in biophotonics. Obtained results open the way and will be leading to construction of truly bio-lasers using nature made luminophores, such as anthocyanins

    Dye Stabilization and Wavelength Tunability in Lasing Fibers Based on DNA

    Get PDF
    Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. Deoxyribonucleic acid (DNA) as optical biopolymer in combination with highly emissive dyes has been reported to have excellent potential in this respect. However, achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and the physicochemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, it is shown that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the nonradiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures

    Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices

    Get PDF
    Results of studies on the amplified spontaneous emission (ASE) phenomenon in 3-(1,1-dicyanoethenyl)-1-pheny1-4,5-dihydro-1H-pyrazole (DCNP) molecules in four different polymeric matrices are reported. We have analyzed ASE spectra coming from thin films of DCNP-matrix samples when excited by the Nd:YAG nanosecond pulsed laser doubled in frequency (lambda = 532 nm). We report on ASE characteristics in function of different excitation pulse energy densities evaluating ASE thresholds, exponential gain coefficients and reporting the influence of the specific matrix-dye interactions on the photo-degradation process of the dye

    Dye stabilization and wavelength tunability in lasing fibers based on DNA

    Get PDF
    Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. Deoxyribonucleic acid (DNA) as optical biopolymer in combination with highly emissive dyes has been reported to have excellent potential in this respect. However, achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and the physicochemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, it is shown that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the nonradiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures

    Real-world study of children and young adults with myeloproliferative neoplasms: identifying risks and unmet needs

    Get PDF
    Myeloproliferative neoplasms (MPNs) are uncommon in children/young adults. Here, we present data on unselected patients diagnosed before 25 years of age included from 38 centers in 15 countries. Sequential patients were included. We identified 444 patients, with median follow-up 9.7 years (0-47.8). Forty-nine (11.1%) had a history of thrombosis at diagnosis, 49 new thrombotic events were recorded (1.16% patient per year [pt/y]), perihepatic vein thromboses were most frequent (47.6% venous events), and logistic regression identified JAK2V617F mutation (P = .016) and hyperviscosity symptoms (visual disturbances, dizziness, vertigo, headache) as risk factors (P = .040). New hemorrhagic events occurred in 44 patients (9.9%, 1.04% pt/y). Disease transformation occurred in 48 patients (10.9%, 1.13% pt/y), usually to myelofibrosis (7.5%) with splenomegaly as a novel risk factor for transformation in essential thrombocythemia (ET) (P= .000) in logistical regression. Eight deaths (1.8%) were recorded, 3 after allogeneic stem cell transplantation. Concerning conventional risk scores: International Prognostic Score for Essential Thrombocythemia-Thrombosis and new International Prognostic Score for Essential Thrombocythemia-Thrombosis differentiated ET patients in terms of thrombotic risk. Both scores identified high-risk patients with the same median thrombosis-free survival of 28.5 years. No contemporary scores were able to predict survival for young ET or polycythemia vera patients. Our data represents the largest real-world study of MPN patients age < 25 years at diagnosis. Rates of thrombotic events and transformation were higher than expected compared with the previous literature. Our study provides new and reliable information as a basis for prospective studies, trials, and development of harmonized international guidelines for the specific management of young patients with MPN

    Shaping of Photo-active Materials by 3D Printing

    No full text
    We report on the development of advanced 3D printing technologies specifically designed for photo-active materials. 3D systems with photoluminescence, optical gain, and photochromic and nonlinear optical properties are demonstrated
    corecore