5 research outputs found

    The Streptococcus gordonii adhesin CshA protein binds host fibronectin via a catch-clamp mechanism

    Get PDF
    Adherence of bacteria to biotic or abiotic surfaces is a prerequisite for host colonization and represents an important step in microbial pathogenicity. This attachment is facilitated by bacterial adhesins at the cell surface. Because of their size and often elaborate multidomain architectures, these polypeptides represent challenging targets for detailed structural and functional characterization. The multifunctional fibrillar adhesin CshA, which mediates binding to both host molecules and other microorganisms, is an important determinant of colonization by Streptococcus gordonii, an oral commensal and opportunistic pathogen of animals and humans. CshA binds the high-molecular-weight glycoprotein fibronectin (Fn) via an N-terminal non-repetitive region, and this protein-protein interaction has been proposed to promote S. gordonii colonization at multiple sites within the host. However, the molecular details of how these two proteins interact have yet to be established. Here we present a structural description of the Fn binding N-terminal region of CshA, derived from a combination of X-ray crystallography, small angle X-ray scattering, and complementary biophysical methods. In vitro binding studies support a previously unreported two-state “catch-clamp” mechanism of Fn binding by CshA, in which the disordered N-terminal domain of CshA acts to “catch” Fn, via formation of a rapidly assembled but also readily dissociable pre-complex, enabling its neighboring ligand binding domain to tightly clamp the two polypeptides together. This study presents a new paradigm for target binding by a bacterial adhesin, the identification of which will inform future efforts toward the development of anti-adhesive agents that target S. gordonii and related streptococci

    Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells

    Get PDF
    The oral anaerobe Porphyromonas gingivalis is associated with the development of cancers including oral squamous cell carcinoma (OSCC). Here we show that infection of gingival epithelial cells with P. gingivalis induces expression and nuclear localization of the ZEB1 transcription factor which controls epithelial-mesenchymal transition (EMT). P. gingivalis also caused an increase in ZEB1 expression as a dual species community with Fusobacterium nucleatum or Streptococcus gordonii. Increased ZEB1 expression was associated with elevated ZEB1 promoter activity and did not require suppression of the miR-200 family of micro RNAs. P. gingivalis strains lacking the FimA fimbrial protein were attenuated in their ability to induce ZEB1 expression. ZEB1 levels correlated with an increase in expression of mesenchymal markers, including vimentin and MMP-9, and with enhanced migration of epithelial cells into matrigel. Knockdown of ZEB1 with siRNA prevented the P. gingivalis-induced increase in mesenchymal markers and epithelial cell migration. Oral infection of mice by P. gingivalis increased ZEB1 levels in gingival tissues, and intracellular P. gingivalis were detected by antibody staining in biopsy samples from OSCC. These findings indicate that FimA-driven ZEB1 expression could provide a mechanistic basis for a P. gingivalis contribution to OSCC

    Purification and characterisation of recombinant His-tagged RgpB gingipain from Porphymonas gingivalis

    No full text
    Gingipain proteases are important virulence factors from the periodontal pathogen Porphyromonas gingivalis and are the target of many in vitro studies. Due to their close biochemical properties, purification of individual gingipains is difficult and requires multiple chromatographic steps. In this study, we demonstrate that insertion of a hexahistidine affinity tag upstream of a C-terminal outer membrane translocation signal in RgpB gingipain leads to the secretion of a soluble, mature form of RgpB bearing the affinity tag which can easily be purified by nickel-chelating affinity chromatography. The final product obtained in high yielding and high purity is biochemically indistinguishable from the native RgpB enzyme
    corecore