16 research outputs found
Recommended from our members
The CLoud–Aerosol–Radiation interaction and forcing: year 2017 (CLARIFY-2017) measurement campaign
The representations of clouds, aerosols, and cloud–aerosol–radiation impacts remain some of the largest uncertainties in climate change, limiting our ability to accurately reconstruct past climate and predict future climate. The south-east Atlantic is a region where high atmospheric aerosol loadings and semi-permanent stratocumulus clouds are co-located, providing an optimum region for studying the full range of aerosol–radiation and aerosol–cloud interactions and their perturbations of the Earth’s radiation budget. While satellite measurements have provided some useful insights into aerosol–radiation and aerosol–cloud interactions over the region, these observations do not have the spatial and temporal resolution, nor the required level of precision to allow for a process-level assessment. Detailed measurements from high spatial and temporal resolution airborne atmospheric measurements in the region are very sparse, limiting their use in assessing the performance of aerosol modelling in numerical weather prediction and climate models. CLARIFY-2017 was a major consortium programme consisting of five principal UK universities with project partners from the UK Met Office and European- and USA-based universities and research centres involved in the complementary ORACLES, LASIC, and AEROCLO-sA projects. The aims of CLARIFY-2017 were fourfold: (1) to improve the representation and reduce uncertainty in model estimates of the direct, semi-direct, and indirect radiative effect of absorbing biomass burning aerosols; (2) to improve our knowledge and representation of the processes determining stratocumulus cloud microphysical and radiative properties and their transition to cumulus regimes; (3) to challenge, validate, and improve satellite retrievals of cloud and aerosol properties and their radiative impacts; (4) to improve the impacts of aerosols in weather and climate numerical models. This paper describes the modelling and measurement strategies central to the CLARIFY-2017 deployment of the FAAM BAe146 instrumented aircraft campaign, summarizes the flight objectives and flight patterns, and highlights some key results from our initial analyses
Recommended from our members
Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments
This is the final version. Available on open access from the European Geosciences Union via the DOI in this recordCode availability:
Processing code for the FAAM core measurements suite is available from GitHub (Sproson et al., 2020).Data availability
Airborne data for the CLARIFY campaign are available from the Centre for Environmental Data Analysis (Facility for Airborne Atmospheric Measurements et al., 2017) and for the ORACLES campaign from NASA Earth Science Project Office (ORACLES Science Team, 2020). The LASIC ground-based data sets are publicly available from the Atmospheric Radiation Measurement Climate Research Facility (Zuidema et al., 2017) with specialist data sets available for the following:
SP2 – https://iop.archive.arm.gov/arm-iop/2016/ (last access: 25 October 2022, Sedlacek, 2017),
CO – https://doi.org/10.5439/1046183 (Springston, 2018b),
CAPS PMSSA – https://adc.arm.gov/discovery/#/results/s::caps-ssa (Onasch et al., 2015),
ACSM – https://doi.org/10.5439/1763029 (Zawadowicz and Howie, 2021).Data are presented from intercomparisons between two research aircraft, the FAAM BAe-146 and the NASA Lockheed P3, and between the BAe-146 and the surface-based DOE (Department of Energy) ARM (Atmospheric Radiation Measurement) Mobile Facility at Ascension Island (8∘ S, 14.5∘ W; a remote island in the mid-Atlantic). These took place from 17 August to 5 September 2017, during the African biomass burning (BB) season. The primary motivation was to give confidence in the use of data from multiple platforms with which to evaluate numerical climate models. The three platforms were involved in the CLouds–Aerosol–Radiation Interaction and Forcing for Year 2017 (CLARIFY-2017), ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES), and Layered Atlantic Smoke and Interactions with Clouds (LASIC) field experiments. Comparisons from flight segments on 6 d where the BAe-146 flew alongside the ARM facility on Ascension Island are presented, along with comparisons from the wing-tip-to-wing-tip flight of the P3 and BAe-146 on 18 August 2017. The intercomparison flight sampled a relatively clean atmosphere overlying a moderately polluted boundary layer, while the six fly-bys of the ARM site sampled both clean and polluted conditions 2–4 km upwind. We compare and validate characterisations of aerosol physical, chemical and optical properties as well as atmospheric radiation and cloud microphysics between platforms. We assess the performance of measurement instrumentation in the field, under conditions where sampling conditions are not as tightly controlled as in laboratory measurements where calibrations are performed. Solar radiation measurements compared well enough to permit radiative closure studies. Optical absorption coefficient measurements from all three platforms were within uncertainty limits, although absolute magnitudes were too low (<10 Mm−1) to fully support a comparison of the absorption Ångström exponents. Aerosol optical absorption measurements from airborne platforms were more comparable than aircraft-to-ground observations. Scattering coefficient observations compared adequately between airborne platforms, but agreement with ground-based measurements was worse, potentially caused by small differences in sampling conditions or actual aerosol population differences over land. Chemical composition measurements followed a similar pattern, with better comparisons between the airborne platforms. Thermodynamics, aerosol and cloud microphysical properties generally agreed given uncertainties.Natural Environment Research Council (NERC)NERC/Met Office Industrial Case studentshipResearch Council of NorwayUS Department of Energy, Office of ScienceNASAUS Department of Energy Atmospheric Systems Research (ASR) programm