3 research outputs found
Optical lattice quantum simulator for QED in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect
Spontaneous creation of electron-positron pairs out of the vacuum due to a
strong electric field is a spectacular manifestation of the relativistic
energy-momentum relation for the Dirac fermions. This fundamental prediction of
Quantum Electrodynamics (QED) has not yet been confirmed experimentally as the
generation of a sufficiently strong electric field extending over a large
enough space-time volume still presents a challenge. Surprisingly, distant
areas of physics may help us to circumvent this difficulty. In condensed matter
and solid state physics (areas commonly considered as low energy physics), one
usually deals with quasi-particles instead of real electrons and positrons.
Since their mass gap can often be freely tuned, it is much easier to create
these light quasi-particles by an analogue of the Sauter-Schwinger effect. This
motivates our proposal of a quantum simulator in which excitations of
ultra-cold atoms moving in a bichromatic optical lattice represent particles
and antiparticles (holes) satisfying a discretized version of the Dirac
equation together with fermionic anti-commutation relations. Using the language
of second quantization, we are able to construct an analogue of the spontaneous
pair creation which can be realized in an (almost) table-top experiment.Comment: 21 pages, 10 figure
Relativistic quantum mechanics with trapped ions
We consider the quantum simulation of relativistic quantum mechanics, as
described by the Dirac equation and classical potentials, in trapped-ion
systems. We concentrate on three problems of growing complexity. First, we
study the bidimensional relativistic scattering of single Dirac particles by a
linear potential. Furthermore, we explore the case of a Dirac particle in a
magnetic field and its topological properties. Finally, we analyze the problem
of two Dirac particles that are coupled by a controllable and confining
potential. The latter interaction may be useful to study important phenomena as
the confinement and asymptotic freedom of quarks.Comment: 17 pages, 4 figure