9 research outputs found

    Method of preparing radially homogeneous mercury cadmium telluride crystals

    Get PDF
    Hg(1-x)Cd(x)Te is prepared in an improved directional solidification method in which a precast alloy sample containing predetermined amounts of Hg, Cd, and Te is disposed in a sealed ampule and a furnace providing two controlled temperature zones is translated upward past the ampule to provide melting and resolidification. The present improvement is directed to maintaining the zones at temperatures determined in accordance with a prescribed formula providing a thermal barrier between the zones with a maximum thickness and translating the furnace past the zones at a rate less the 0.31 micron/sec

    NASA Microgravity Materials Science Conference

    Get PDF
    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers

    Growth of Solid Solution Single Crystals

    Get PDF
    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals

    Exploiting the Temperature/Concentration Dependence of Magnetic Susceptibility to Control Convection in Fundamental Studies of Solidification Phenomena

    Get PDF
    The objective of this new research project is to demonstrate by experiment, supplemented by mathematical modeling and physical property measurement, that the effects of buoyancy driven convection can be largely eliminated in ground-based experiments, and further reduced in flight, by applying a new technique. That technique exploits the dependence of magnetic susceptibility on composition or temperature. It is emphasized at the outset that the phenomenon to be exploited is fundamentally and practically different from the magnetic damping of convection in conducting liquids that has been the subject of much prior research. The concept suggesting this research is that all materials, even non-conductors, when placed in a magnetic field gradient, experience a force. Of particular interest here are paramagnetic and diamagnetic materials, classes which embrace the "model alloys", such as succinonitrile-acetone, that have been used by others investigating the fundamentals of solidification. Such alloys will exhibit a dependence of susceptibility on composition. The consequence is that, with a properly oriented field (gradient) a force will arise that can be made to be equal to, but opposite, the buoyancy force arising from concentration (or temperature) gradients. In this way convection can be stilled. The role of convection in determining the microstructure, and thereby properties, of materials is well known. Elimination of that convection has both scientific and technological consequences. Our knowledge of diffusive phenomena in solidification, phenomena normally hidden by the dominance of convection, is enhanced if we can study solidification of quiescent liquids. Furthermore, the microstructure, microchemistry and properties of materials (thereby practical value) are affected by the convection occurring during their solidification. Hitherto the method of choice for elimination of convection has been experimentation in microgravity. However, even in low Earth orbit, residual convection has effects. That residual convection arises from acceleration (drag on the spacecraft), displacement from the center of mass or transients in the gravitational field (g-jitter). There is therefore a need for both further reducing buoyancy driven flow in flight and allowing the simulation of microgravity during ground based experiments. Previous investigations, the research project description, theory behind the study and experimental methods as well as plots of magnetic fields and forces are presented

    Melt Stabilization of PbSnTe in a Magnetic Field

    Get PDF
    Both the experimental observation and numerical simulation indicate that the Bridgman growth of PbSnTe under the microgravity environment in space is still greatly influenced by buoyancy-induced convection. The application of a magnetic field during the semiconductor growth can dampen the convective flow in the metal-like melt. However, for Bridgman growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental observation and numerical modeling suggest that even with a strong magnetic furnace (5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently suppressed to reach the diffusion-controlled level. In order to completely dampen the buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for common experimental conditions, an extremely high magnetic field is required, far beyond the capacity of the experimental apparatus currently available. Therefore, it is proposed that only the combination of microgravity environment and magnetic damping will produce the desired diffusion-controlled growth state for this particular material. The primary objectives of this study are to provide a quantitative understanding of the complex transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for furnace design and growth condition optimization, to provide estimates of the required magnetic field strength for low gravity growth, and to assess the role of magnetic damping for space and earth control of the double-diffusive convection. As an integral part of a NASA research program, our numerical simulation supports both the flight and ground-based experiments in an effort to bring together a complete picture of the complex physical phenomena involved in the crystal growth process. For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal configurations), the simulations suggest that a moderate axial magnetic field of only a few kilo-Gauss in strength could effectively eliminate buoyancy-induced convection in the melt and control solute segregation. Therefore, this work confirms the idea that the combination of microgravity environment and the magnetic damping will indeed be sufficient to produce the desired diffusion-controlled growth state for PbSnTe

    Crystal Growth of II-VI Semiconducting Alloys by Directional Solidification

    Get PDF
    This research study is investigating the effects of a microgravity environment during the crystal growth of selected II-VI semiconducting alloys on their compositional, metallurgical, electrical and optical properties. The on-going work includes both Bridgman-Stockbarger and solvent growth methods, as well as growth in a magnetic field. The materials investigated are II-VI, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se, where x is between 0 and 1 inclusive, with particular emphasis on x-values appropriate for infrared detection and imaging in the 5 to 30 micron wavelength region. Wide separation between the liquidus and solidus of the phase diagrams with consequent segregation during solidification and problems associated with the high volatility of one of the components (Hg), make the preparation of homogeneous, high-quality, bulk crystals of the alloys an extremely difficult nearly an impossible task in a gravitational environment. The three-fold objectives of the on-going investigation are as follows: (1) To determine the relative contributions of gravitationally-driven fluid flows to the compositional redistribution observed during the unidirectional crystal growth of selected semiconducting solid solution alloys having large separation between the liquidus and solidus of the constitutional phase diagram; (2) To ascertain the potential role of irregular fluid flows and hydrostatic pressure effects in generation of extended crystal defects and second-phase inclusions in the crystals; and, (3) To obtain a limited amount of "high quality" materials needed for bulk crystal property characterizations and for the fabrication of various device structures needed to establish ultimate material performance limits. The flight portion of the study was to be accomplished by performing growth experiments using the Crystal Growth Furnace (CGF) manifested to fly on various Spacelab missions

    Magnetic Damping of Solid Solution Semiconductor Alloys

    Get PDF
    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations

    Reduction of Defects in Germanium-Silicon

    Get PDF
    It is well established that crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached-Bridgman growth is often cited as a promising tool to improve crystal quality, without the limitations of float zoning. Detached growth has been found to occur quite often during microgravity experiments and considerable improvements of crystal quality have been reported for those cases. However, no thorough understanding of the process or quantitative assessment of the quality improvements exists so far. This project will determine the means to reproducibly grow Ge-Si alloys in the detached mode. Specific objectives include: (1) measurement of the relevant material parameters such as contact angle, growth angle, surface tension, and wetting behavior of the GeSi-melt on potential crucible materials; (2) determination of the mechanism of detached growth including the role of convection; (3) quantitative determination of the differences of defects and impurities among normal Bridgman, detached Bridgman, and floating zone (FZ) growth; (4) investigation of the influence of defined azimuthal or meridional flow due to rotating magnetic fields on the characteristics of detached growth; (5) control time-dependent Marangoni convection in the case of FZ-growth by the use of a rotating magnetic field to examine the influence on the curvature of the solid-liquid interface and the heat and mass transport; and (6) grow high quality GeSi-single crystals with Si-concentration up to 10 at% and diameters up to 20 mm
    corecore