8 research outputs found

    Structure and magnetic properties of thermodynamically predicted rapidly quenched Fe85-xCuxB15 alloys

    Get PDF
    In this work, based on the thermodynamic prediction, the comprehensive studies of the influence of Cu for Fe substitution on the crystal structure and magnetic properties of the rapidly quenched Fe85B15 alloy in the ribbon form are performed. Using thermodynamic calculations, the parabolic shape dependence of the DGamoprh with a minimum value at 0.6% of Cu was predicted. The DGamoprh from the Cu content dependence shape is also asymmetric, and, for Cu = 0% and Cu = 1.5%, the same DGamoprh value is observed. The heat treatment optimization process of all alloys showed that the least lossy (with a minimum value of core power losses) is the nanocomposite state of nanocrystals immersed in an amorphous matrix obtained by annealing in the temperature range of 300–330 C for 20 min. The minimum value of core power losses P10/50 (core power losses at 1T@50Hz) of optimally annealed Fe85-xCuxB15 x = 0,0.6,1.2% alloys come from completely different crystallization states of nanocomposite materials, but it strongly correlates with Cu content and, thus, a number of nucleation sites. The TEM observations showed that, for the Cu-free alloy, the least lossy crystal structure is related to 2–3 nm short-ordered clusters; for the Cu = 0.6% alloy, only the limited value of several -Fe nanograins are found, while for the Cu-rich alloy with Cu = 1.2%, the average diameter of nanograins is about 26 nm, and they are randomly distributed in the amorphous matrix. The only high number of nucleation sites in the Cu = 1.2% alloy allows for a sufficient level of grains’ coarsening of the -Fe phase that strongly enhances the ferromagnetic exchange between the -Fe nanocrystals, which is clearly seen with the increasing value of saturation induction up to 1.7T. The air-annealing process tested on studied alloys for optimal annealing conditions proves the possibility of its use for this type of material

    Microstructure of Coatings on Nickel and Steel Platelets Obtained by Co-Milling with NiAl and CrB2 Powders

    No full text
    Metal matrix composite coatings are developed to protect parts made from materials susceptible to wear, like nickel alloys or stainless steel. The industry-established deposition method is presently an atmospheric plasma spraying method since it allows the production of both well-adhering and thick coatings. Alternatively, similar coatings could be produced by co-milling of ceramic and alloyed powders together with metallic plates serving as substrates. It results in mechanical embedding of the powder particles into exposed metallic surfaces required coatings. The present experiment was aimed at the analysis of microstructure of such coatings obtained using NiAl and CrB2 powders. They were loaded together with nickel and stainless steel platelets into ball mill vials and rotated at 350 rpm for up to 32 h. This helped to produce coatings of a thickness up to ~40 µm. The optical, scanning, and transmission electron microscopy observations of the coatings led to conclusion that the higher the rotation speed of vials, the wider the intermixing zone between the coating and the substrate. Simultaneously, it was established that the total thickness of the coating deposited at specified conditions is limited by the brittleness of its nanocrystalline matrix. An increase in the hardness of the substrate results in a decrease of the intermixing zone. The above results indicate that even as the method based on mechanical embedding could so far produce thinner coatings than the plasma spraying, in the former case they are characterized by a more uniform nanocrystalline matrix with homogenously distributed fine ceramic particles

    Effect of Co Substitution and Thermo-Magnetic Treatment on the Structure and Induced Magnetic Anisotropy of Fe84.5−xCoxNb5B8.5P2 Nanocrystalline Alloys

    No full text
    In the present work, we investigated in detail the thermal/crystallization behavior and magnetic properties of materials with Fe84.5-xCoxNb5B8.5P2 (x = 0, 5, 10, 15 and 20 at.%) composition. The amorphous ribbons were manufactured on a semi-industrial scale by the melt-spinning technique. The subsequent nanocrystallization processes were carried out under different conditions (with/without magnetic field). The comprehensive studies have been carried out using differential scanning calorimetry, X-ray diffractometry, transmission electron microscopy, hysteresis loop analyses, vibrating sample magnetometry and Mössbauer spectroscopy. Moreover, the frequency (up to 300 kHz) dependence of power losses and permeability at a magnetic induction up to 0.9 T was investigated. On the basis of some of the results obtained, we calculated the values of the activation energies and the induced magnetic anisotropies. The X-ray diffraction results confirm the surface crystallization effect previously observed for phosphorous-containing alloys. The in situ microscopic observations of crystallization describe this process in detail in accordance with the calorimetry results. Furthermore, the effect of Co content on the phase composition and the influence of annealing in an external magnetic field on magnetic properties, including the orientation of the magnetic spins, have been studied using various magnetic techniques. Finally, nanocrystalline Fe64.5Co20Nb5B8.5P2 cores were prepared after transverse thermo-magnetic heat treatment and installed in industrially available portable heating equipment

    Fe-Co-B Soft Magnetic Ribbons: Crystallization Process, Microstructure and Coercivity

    No full text
    In this work, a detailed microstructural investigation of as-melt-spun and heat-treated Fe67Co20B13 ribbons was performed. The as-melt-spun ribbon was predominantly amorphous at room temperature. Subsequent heating demonstrated an amorphous to crystalline α-(Fe,Co) phase transition at 403 °C. In situ transmission electron microscopy observations, carried out at the temperature range of 25–500 °C and with the heating rate of 200 °C/min, showed that the first crystallized nuclei appeared at a temperature close to 370 °C. With a further increase of temperature, the volume of α-(Fe,Co) crystallites considerably increased. Moreover, the results showed that a heating rate of 200 °C/min provides for a fine and homogenous microstructure with the α-(Fe,Co) crystallites size three times smaller than when the ribbon is heated at 20 °C/min. The next step of this research concerned the influence of both the annealing time and temperature on the microstructure and coercivity of the ribbons. It was shown that annealing at 485 °C for a shorter time (2 s) led to materials with homogenous distribution of α-(Fe,Co) crystallites with a mean size of 30 nm dispersed in the residual amorphous matrix. This was reflected in the coercivity (20.5 A/m), which significantly depended on the volume fraction of crystallites, their size, and distribution

    Structural Characterization and Properties of Al/Fe Multi-Layer Composites Produced by Hot Pressing

    No full text
    This study aimed to develop Fe/Al multilayered metallic/intermetallic composites produced by hot pressing under an air atmosphere. Analyses were carried out on the composite plates made up of alternatively situated sheets of AA1050 aluminum alloy and DN04 low carbon steel, which were annealed at 903 K for 2, 5, and 10 h. Annealing was performed to obtain reaction layers of distinct thickness. The samples were examined using X-Ray diffraction and scanning and transmission electron microscope equipped with an energy-dispersive X-Ray spectrometer. To correlate the structural changes with mechanical properties, microhardness measurements in near-the-interface layers were performed. All the reaction layers grew with parabolic kinetics with η-Al5Fe2 intermetallic phase as the dominant component. After annealing for 5 and 10 hours, a thin sublayer of θ-Al13Fe4 phase was also detected

    Structure of MgLiAl alloys after various routes of severe plastic deformation studied by TEM

    No full text
    Two MgLiAl alloys consisting either of alpha (hcp) + beta (bcc) phases or only beta phase were subjected to twist channel angular pressing TCAP (with helical component) or cyclic compression to a total strain of epsilon = 5 in order to study the effectiveness of various deformation modes on grain refinement. After the first TCAP pass grains of alpha phase were refined from 30 mu m down to about 6 mu m and of beta phase from initial 200 mu m down to 8 mu m. MAXStrain cycling led to much finer grains of alpha and beta phases in the range 200-300 nm causing higher hardening and indicating higher effectiveness of the process. The Li2MgAl precipitates were refined during severe plastic deformation (SPD) processes and in addition fine particles of hexagonal alpha phase of size below 100 nm were observed within the beta phase showing orientation relationship (0001) alpha parallel to (011) beta. Two-phase material after SPD showed deviation of about 1.5 degrees from the ideal Burgers orientation relationship (0001) alpha parallel to (011) beta.Web of Science1101312

    Influence of Cu Content on Structure and Magnetic Properties in Fe86-xCuxB14 Alloys

    No full text
    Influence of Cu content on thermodynamic parameters (configurational entropy, Gibbs free energy of mixing, Gibbs free energy of amorphous phase formation), crystallization kinetics, structure and magnetic properties of Fe86-xCuxB14 (x = 0, 0.4, 0.55, 0.7, 1) alloys is investigated. The chemical composition has been optimized using a thermodynamic approach to obtain a minimum of Gibbs free energy of amorphous phase formation (minimum at 0.55 at.% of Cu). By using differential scanning calorimetry method the crystallization kinetics of amorphous melt-spun ribbons was analyzed. It was found that the average activation energy of α-Fe phase crystallization is in the range from 201.8 to 228.74 kJ/mol for studied samples. In order to obtain the lowest power core loss values, the isothermal annealing process was optimized in the temperature range from 260 °C to 400 °C. Materials annealed at optimal temperature had power core losses at 1 T/50 Hz—0.13–0.25 W/kg, magnetic saturation—1.47–1.6 T and coercivity—9.71–13.1 A/m. These samples were characterized by the amorphous structure with small amount of α-Fe nanocrystallites. The studies of complex permeability allowed to determine a minimum of both permeability values at 0.55 at.% of Cu. At the end of this work a correlation between thermodynamic parameters and kinetics, structure and magnetic properties were described
    corecore