84 research outputs found

    On possible skewon effects on light propagation

    Full text link
    We start from a local and linear spacetime relation between the electromagnetic excitation and the field strength. Then we study the generally covariant Fresnel surfaces for light rays and light waves. The metric and the connection of spacetime are left unspecified. Accordingly, our framework is ideally suited for a search of possible violations of the Lorentz symmetry in the photon sector of the extended standard model. We discuss how the skewon part of the constitutive tensor, if suitably parametrized, influences the Fresnel surfaces and disturbs the light cones of vacuum electrodynamics. Conditions are specified that yield the reduction of the original quartic Fresnel surface to the double light cone structure (birefringence) and to the single light cone. Qualitatively, the effects of the real skewon field can be compared to those in absorbing material media. In contrast, the imaginary skewon field can be interpreted in terms of non-absorbing media with natural optical activity and Faraday effects. The astrophysical data on gamma-ray bursts are used for deriving an upper limit for the magnitude of the skewon field.Comment: Revtex, 29 pages, 10 figures, references added, text as in the published versio

    �ber die Temperaturabh�ngigkeit der Dispersion des elektrooptischen Kerreffektes

    No full text

    Zur Bornschen Dipoltheorie der anisotropen Fl�ssigkeiten

    No full text

    Zur Kenntnis der Dispersion der magnetischen Doppelbrechung

    No full text
    • …
    corecore