655 research outputs found

    A quantum solution to the arrow-of-time dilemma

    Full text link
    The arrow of time dilemma: the laws of physics are invariant for time inversion, whereas the familiar phenomena we see everyday are not (i.e. entropy increases). I show that, within a quantum mechanical framework, all phenomena which leave a trail of information behind (and hence can be studied by physics) are those where entropy necessarily increases or remains constant. All phenomena where the entropy decreases must not leave any information of their having happened. This situation is completely indistinguishable from their not having happened at all. In the light of this observation, the second law of thermodynamics is reduced to a mere tautology: physics cannot study those processes where entropy has decreased, even if they were commonplace.Comment: Contains slightly more material than the published version (the additional material is clearly labeled in the latex source). Because of PRL's title policy, the leading "A" was left out of the title in the published pape

    Performance of discrete heat engines and heat pumps in finite time

    Get PDF
    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure

    Breakdown of the Landauer bound for information erasure in the quantum regime

    Full text link
    A known aspect of the Clausius inequality is that an equilibrium system subjected to a squeezing \d S of its entropy must release at least an amount |\dbarrm Q|=T|\d S| of heat. This serves as a basis for the Landauer principle, which puts a lower bound Tln2T\ln 2 for the heat generated by erasure of one bit of information. Here we show that in the world of quantum entanglement this law is broken. A quantum Brownian particle interacting with its thermal bath can either generate less heat or even {\it adsorb} heat during an analogous squeezing process, due to entanglement with the bath. The effect exists even for weak but fixed coupling with the bath, provided that temperature is low enough. This invalidates the Landauer bound in the quantum regime, and suggests that quantum carriers of information can be much more efficient than assumed so far.Comment: 13 pages, revtex, 2 eps figure

    Quantum Theory and Time Asymmetry

    Full text link
    The relation between quantum measurement and thermodynamically irreversible processes is investigated. The reduction of the state vector is fundamentally asymmetric in time and shows an observer-relatedness which may explain the double interpretation of the state vector as a representation of physical states as well as of information about them. The concept of relevance being used in all statistical theories of irreversible thermodynamics is shown to be based on the same observer-relatedness. Quantum theories of irreversible processes implicitly use an objectivized process of state vector reduction. The conditions for the reduction are discussed, and I speculate that the final (subjective) observer system might even be carried by a spacetime point.Comment: Latex version of a paper published in 1979 (with minor revisions), 18 page

    Urbanismo no Rio de Janeiro

    Get PDF
    Fac-sim. da: 1. ed. Rio de Janeiro: O Construtor, 1950

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~gcm3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass MM_\star=0.99±0.050.99\pm0.05~M\mathrm{M_{\odot}}, radius RR_\star=1.01±0.041.01\pm0.04~R\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal
    corecore