518 research outputs found

    Long-lived non-thermal states realized by atom losses in one-dimensional quasi-condensates

    Get PDF
    We investigate the cooling produced by a loss process non selective in energy on a one-dimensional (1D) Bose gas with repulsive contact interactions in the quasi-condensate regime. By performing nonlinear classical field calculations for a homogeneous system, we show that the gas reaches a non-thermal state where different modes have acquired different temperatures. After losses have been turned off, this state is robust with respect to the nonlinear dynamics, described by the Gross-Pitaevskii equation. We argue that the integrability of the Gross-Pitaevskii equation is linked to the existence of such long-lived non-thermal states, and illustrate this by showing that such states are not supported within a non-integrable model of two coupled 1D gases of different masses. We go beyond a classical field analysis, taking into account the quantum noise introduced by the discreteness of losses, and show that the non-thermal state is still produced and its non-thermal character is even enhanced. Finally, we extend the discussion to gases trapped in a harmonic potential and present experimental observations of a long-lived non-thermal state within a trapped 1D quasi-condensate following an atom loss process

    Optimal and Robust Quantum Metrology Using Interaction-Based Readouts

    Full text link
    Useful quantum metrology requires nonclassical states with a high particle number and (close to) the optimal exploitation of the state's quantum correlations. Unfortunately, the single-particle detection resolution demanded by conventional protocols, such as spin squeezing via one-axis twisting, places severe limits on the particle number. Additionally, the challenge of finding optimal measurements (that saturate the quantum Cram{\'e}r-Rao bound) for an arbitrary nonclassical state limits most metrological protocols to only moderate levels of quantum enhancement. "Interaction-based readout" protocols have been shown to allow optimal interferometry \emph{or} to provide robustness against detection noise at the expense of optimality. In this Letter, we prove that one has great flexibility in constructing an optimal protocol, thereby allowing it to also be robust to detection noise. This requires the full probability distribution of outcomes in an optimal measurement basis, which is typically easily accessible and can be determined from specific criteria we provide. Additionally, we quantify the robustness of several classes of interaction-based readouts under realistic experimental constraints. We determine that optimal \emph{and} robust quantum metrology is achievable in current spin-squeezing experiments.Comment: 7 pages, 3 figure

    Continuous measurement feedback control of a Bose-Einstein condensate using phase contrast imaging

    Full text link
    We consider the theory of feedback control of a Bose-Einstein condensate (BEC) confined in a harmonic trap under a continuous measurement constructed via non-destructive imaging. A filtering theory approach is used to derive a stochastic master equation (SME) for the system from a general Hamiltonian based upon system-bath coupling. Numerical solutions for this SME in the limit of a single atom show that the final steady state energy is dependent upon the measurement strength, the ratio of photon kinetic energy to atomic kinetic energy, and the feedback strength. Simulations indicate that for a weak measurement strength, feedback can be used to overcome heating introduced by the scattering of light, thereby allowing the atom to be driven towards the ground state.Comment: 4 figures, 11 page

    Should EOAD patients be included in clinical trials?

    Get PDF
    Alzheimer disease (AD) is a devastating neurodegenerative disease affecting 1 in 68 in the population. An arbitrary cutoff 65 years as the age of onset to distinguish between early- and late-onset AD has been proposed and has been used in the literature for decades. As the majority of patients develop AD after 65 years of age, most clinical trials address this population. While the early-onset cases represent only 1% to 6% of AD cases, this population is the active working subset and thus contributes to a higher public health burden per individual, and early-onset cases are the most devastating at the level of the individual and their families. In this review, we compare and contrast the clinical, neuropsychological, imaging, genetic, biomarker, and pathological features of these two arbitrary groups. Finally, we discuss the ethical dilemma of non-abandonment and justice as it pertains to exclusion of the early-onset AD patients from clinical trials

    Quantum metrology with mixed states: when recovering lost information is better than never losing it

    Get PDF
    Quantum-enhanced metrology can be achieved by entangling a probe with an auxiliary system, passing the probe through an interferometer, and subsequently making measurements on both the probe and auxiliary system. Conceptually, this corresponds to performing metrology with the purification of a (mixed) probe state. We demonstrate via the quantum Fisher information how to design mixed states whose purifications are an excellent metrological resource. In particular, we give examples of mixed states with purifications that allow (near) Heisenberg-limited metrology and provide examples of entangling Hamiltonians that can generate these states. Finally, we present the optimal measurement and parameter-estimation procedure required to realize these sensitivities (i.e., that saturate the quantum Cramér-Rao bound). Since pure states of comparable metrological usefulness are typically challenging to generate, it may prove easier to use this approach of entanglement and measurement of an auxiliary system. An example where this may be the case is atom interferometry, where entanglement with optical systems is potentially easier to engineer than the atomic interactions required to produce nonclassical atomic states

    Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback

    Get PDF
    A "no-knowledge" measurement of an open quantum system yields no information about any system observable; it only returns noise input from the environment. Surprisingly, performing such a no-knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge monitoring has reversible noise, which can be cancelled by directly feeding back the measurement signal. We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general, robust and can operate in conjunction with any other quantum control protocol. As an application, we show that no-knowledge feedback could be used to improve the performance of dissipative quantum computers subjected to local loss.Comment: 6 pages + 2 pages supplemental material, 3 figure

    Controlling chaos in the quantum regime using adaptive measurements

    Get PDF
    The continuous monitoring of a quantum system strongly influences the emergence of chaotic dynamics near the transition from the quantum regime to the classical regime. Here we present a feedback control scheme that uses adaptive measurement techniques to control the degree of chaos in the driven-damped quantum Duffing oscillator. This control relies purely on the measurement backaction on the system, making it a uniquely quantum control, and is only possible due to the sensitivity of chaos to measurement. We quantify the effectiveness of our control by numerically computing the quantum Lyapunov exponent over a wide range of parameters. We demonstrate that adaptive measurement techniques can control the onset of chaos in the system, pushing the quantum-classical boundary further into the quantum regime

    Quantum tunneling dynamics of an interacting Bose-Einstein condensate through a Gaussian barrier

    Full text link
    The transmission of an interacting Bose-Einstein condensate incident on a repulsive Gaussian barrier is investigated through numerical simulation. The dynamics associated with interatomic interactions are studied across a broad parameter range not previously explored. Effective 1D Gross-Pitaevskii equation (GPE) simulations are compared to classical Boltzmann-Vlasov equation (BVE) simulations in order to isolate purely coherent matterwave effects. Quantum tunneling is then defined as the portion of the GPE transmission not described by the classical BVE. An exponential dependence of transmission on barrier height is observed in the purely classical simulation, suggesting that observing such exponential dependence is not a sufficient condition for quantum tunneling. Furthermore, the transmission is found to be predominately described by classical effects, although interatomic interactions are shown to modify the magnitude of the quantum tunneling. Interactions are also seen to affect the amount of classical transmission, producing transmission in regions where the non-interacting equivalent has none. This theoretical investigation clarifies the contribution quantum tunneling makes to overall transmission in many-particle interacting systems, potentially informing future tunneling experiments with ultracold atoms.Comment: Close to the published versio
    • …
    corecore