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Controlling chaos in the quantum regime using adaptive measurements
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The continuous monitoring of a quantum system strongly influences the emergence of chaotic dynamics near
the transition from the quantum regime to the classical regime. Here we present a feedback control scheme that
uses adaptive measurement techniques to control the degree of chaos in the driven-damped quantum Duffing
oscillator. This control relies purely on the measurement backaction on the system, making it a uniquely quantum
control, and is only possible due to the sensitivity of chaos to measurement. We quantify the effectiveness of
our control by numerically computing the quantum Lyapunov exponent over a wide range of parameters. We
demonstrate that adaptive measurement techniques can control the onset of chaos in the system, pushing the
quantum-classical boundary further into the quantum regime.
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I. INTRODUCTION

Quantum systems possess uniquely nonclassical proper-
ties, such as coherence and entanglement, which can be
manipulated for applications including quantum computa-
tion [1,2], quantum communication [3,4], and quantum sens-
ing [5,6]. Designing controls that do this is a diverse and
productive area of ongoing research [7–19]. However, these
nonclassical properties also considerably modify the kinds
of control strategies and mechanisms available to quantum
systems.

One key example of the differences is the role of measure-
ment. It is a given in classical control that one can measure
the system and act upon it based on the information extracted
about the system. However, for a quantum system measure-
ment itself changes the state of the system and this has to
be carefully accounted for in the design of many closed-loop
control protocols [20–26]. Although measurement backaction
is usually considered undesirable—an unwanted effect to be
minimized—from another perspective measurement is an ex-
tra “control knob” unavailable in the classical context, which
can be used to develop new control strategies for quantum
dynamical systems [27,28]. In particular, adaptive measure-
ments have been used to improve phase estimation [29], in
quantum state preparation [30], and to enhance the precision
of quantum measurements [31].

In this paper, we explore how this uniquely quantum knob
can be used to control the dynamics of a chaotic system.
Classically, controlling these systems is both a significant
and nontrivial problem. In some situations it is desirable to
induce chaotic dynamics, as in the case of embedding data into
chaotic signals for secure transmission of information [32].
However, in other cases the task is to lock the system to
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stable orbits, as when aiming to regularize the behavior of car-
diac rhythms [33] or improve energy harvesting in cantilever
devices [34,35]. In many of these stabilization problems,
feedback methods are used to turn an originally unstable orbit
embedded in the chaotic attractor into a regular one [36,37]. In
this work, we show that transitioning at will from chaos to reg-
ularity is possible by using a real-time adaptive measurement
protocol. In particular, our protocol combines the tunability of
quantum measurement backaction on the quantum state with
the underlying geometry of the classical dynamical system.
This opens up regimes of control not available to open-loop
control schemes.

This quantum control strategy cannot be borrowed straight-
forwardly from an analogous classical problem, not only
because of the aforementioned peculiarities of quantum mea-
surement, but also due to subtleties associated with identify-
ing emergent quantum chaotic orbits. In a closed quantum
system, coherent interference effects cause a breakdown in
the correspondence principle such that chaotic classical dy-
namics do not emerge when the underlying quantum model
is taken to the macroscopic limit [38]. However, in open
quantum systems, decoherence destroys such quantum in-
terference effects [39], allowing emergent chaotic dynamics
in the classical limit [39–46]. In particular, by considering
stochastic unravelings of an open quantum system, which
are physically associated with making particular continuous
measurements on the system [47–49], we can observe chaos
in the conditional system dynamics [42,49]. The stochastic
unravelings allow chaos to be identified and quantified with
the quantum Lyapunov exponent [50–54] and also provide
the necessary ingredient for a closed-loop feedback control
scheme.

Previously, we showed that the behavior of the system can
be chaotic or not depending on the initial (and fixed) choice of
measurement, due to the interplay between the interference ef-
fects induced by the nonlinear dynamics and the effectiveness
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of the measurement in destroying them [55]. This sensitivity
to measurement choice was shown to be absent both in the
macroscopic limit, where the effects of quantum measurement
are naturally expected to disappear, and in a highly quantum
regime, where noise dominates and measurement choice be-
comes irrelevant. Although the system behaves chaotically
in the former case, as in the classical analog, in the latter,
chaos is suppressed by quantum effects. As the main outcome
of the control protocol presented here, we are able to show
that a judicious real-time choice of measurement can induce
chaotic behavior deeper in the quantum regime, effectively
pushing the quantum-classical boundary further towards the
microscopic domain.

II. QUANTUM DUFFING OSCILLATOR

To illustrate our adaptive protocol, we consider a driven-
damped Duffing oscillator [56], a model that has been ex-
tensively used in the investigation of chaotic dynamics in
open quantum systems [51,54,55,57–59]. The model consists
of a particle that oscillates in a double-well potential that is
periodically tilted by an external driving force with amplitude
g and frequency �. The dimensionless quantum Hamiltonian
describing this model is given by

Ĥ = 1

2
P̂ 2 + β2

4
Q̂4 − 1

2
Q̂2 + �

2
(Q̂P̂ + P̂ Q̂)

− g

β
Q̂ cos (�t ), (1)

where time is in units of the trap period 2π/ω0 and Q̂ =
x̂/

√
h̄/(mω0) and P̂ = p̂/

√
h̄mω0 are, respectively, the di-

mensionless position and momentum operators for a single
particle of mass m. The first term in the Hamiltonian describes
the kinetic energy, the quartic and quadratic terms in Q̂

describe the double-well potential, and the last term describes
the periodic driving of the particle. The dimensionless pa-
rameter β2 = h̄/(ml2ω0) defines the scale of the phase space
relative to Planck’s constant [51,53,58] (where l characterizes
the size of the system). A larger β is therefore associated with
a regime where quantum fluctuations have a larger effect on
the oscillator dynamics. Thus, by tuning β we can study the
transition from the quantum regime to the classical regime
(β → 0).

To include damping, we model the quantum dynamics
through the master equation

ρ̇ = −i[Ĥ , ρ] + (
L̂ρL̂† − 1

2 {L̂†L̂, ρ}), (2)

where dissipation effects arise from choosing the system-
environment coupling, L̂ = √

�(Q̂ + iP̂ ) = √
2�â, to be

proportional to the annihilation operator of the harmonic
oscillator.

In the classical limit (β → 0), we can make the identi-
fications 〈Q̂〉 → xcl and 〈P̂ 〉 → pcl such that the equations
of motion for 〈Q̂〉 and 〈P̂ 〉 correspond to the dimensionless
classical dynamics given by [51,53,55,58]

ẍcl + 2�ẋcl + β2x3
cl − xcl = g

β
cos (�t ). (3)

Although the scaling factor β is crucial in determining the role
of quantum effects in the dynamics, classically it is a trivial

FIG. 1. Wigner function for the steady state of the unconditional
dynamics given by the master equation (2) for the dimensionless
parameters � = 0.10, g = 0.3, and � = 1. The Poincaré section of
the classical Duffing oscillator is also overlaid for these parameters
(black dots). The system exhibits chaos for these parameters, as seen
by the emergence of the strange attractor and the positive Lyapunov
exponent λcl = 0.16. Here the Wigner function for the unconditional
state also follows the shape of the strange attractor in phase space,
which is a signature of chaotic dynamics. The scaling parameter
β = 0.3 was chosen to allow for a direct comparison with the results
in Figs. 3 and 5.

scaling factor due to the definition of xcl and pcl . Indeed,
for rescaling X ≡ βxcl , the classical equation of motion is
independent of β. Note also that the quantum dissipation,
given in terms of L̂, is symmetric with respect to position and
momentum. The extra term proportional to the damping rate �

in the Hamiltonian (1) breaks this symmetry in such a way that
the dissipative force is proportional to the velocity, exactly as
expected in the classical limit.

Depending on the parameters, the classical model de-
scribed by Eq. (3) exhibits chaotic dynamics as illustrated
by the strange attractor in phase space shown by the black
dots in Fig. 1. The steady state of the Wigner function,
obtained by numerically solving Eq. (2), is also shown in
Fig. 1 for the same set of parameters. This illustrates that
the Wigner function of the ensemble-averaged quantum state
broadly matches the strange attractor, which is a signature of
chaotic dynamics. However, the degree of chaos cannot be
quantified via the unconditional dynamics of Eq. (2), since
any two initial states evolve to the same asymptotic state,
giving a negative Lyapunov exponent. This does not mean that
chaos is not present; indeed, the same problem would arise in
classical chaos if one decided to calculate classical Lyapunov
exponents by using the separation of average trajectories
over a classical ensemble, rather than the separation of two
classical trajectories. To define the degree of chaos via a
quantum Lyapunov exponent, we need to use a conditional
quantum trajectory approach that has a direct comparison with
the classical trajectory approach [42,59–61].

III. CONTINUOUS MEASUREMENT OF AN OPEN
QUANTUM SYSTEM

The master equation (2) describes the ensemble-averaged
evolution of the open quantum system. However, imple-
menting a closed-loop control scheme that depends on the
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FIG. 2. Adaptive measurement scheme in a quantum optics
setup. The state-dependent controller chooses the LO phase φ at each
time step in order to change the measurement backaction applied to
the system, which changes the evolution as desired.

monitored real-time dynamics requires a description of a
single experimental realization (or trajectory). This is pro-
vided by stochastic unravelings of the master equation, which
correspond to the evolution of the quantum state conditioned
on a continuous measurement record [47,62–64].

Here we consider the class of diffusive quantum trajecto-
ries which, in its most general form, is described by the Ito
stochastic Schrödinger equation (SSE) [47,64]:

d|ψ〉 =
(

−iĤ − L̂†L̂

2
+ 〈L̂†〉L̂ − 〈L̂†〉〈L̂〉

2

)
|ψ〉dt

+ (L̂ − 〈L̂〉)|ψ〉dξ, (4)

where the noise term dξ is a complex Wiener process with
zero mean (E[dξ ] = 0) and correlations

dξdξ ∗ = dt and dξdξ = udt, (5)

with u being a complex number satisfying |u| � 1 [47,64].
In what follows, we choose u = exp (−2iφ) so that dξ =
exp (−iφ)dW , where dW is a real noise of zero mean
and dW 2 = dt . Physically, this choice corresponds to a
continuous measurement of the quadrature operator X̂φ =
[exp (−iφ)â + exp (iφ)â†]/

√
2. Experimentally, this could be

achieved by performing a standard balanced homodyne de-
tection on the output of the system, as shown in Fig. 2. The
output channel L̂ = √

2�â is combined with a local oscillator
(LO) of phase φ at a beam splitter, while the readings at the
detectors are subtracted to yield a measurement signal Idt =√

�〈X̂φ〉 + dW [47]. The phase φ of the LO is a controllable
parameter that determines the quadrature to be measured.
For instance, φ = 0 results in a measurement of Q̂ = X̂φ=0,
whereas φ = π/2 gives a measurement of P̂ = X̂φ=π/2.

Within the context of quantum chaos, this quantum tra-
jectory approach has proven useful in the investigation of
the quantum-classical transition [42,49,58,64,65]. Further-
more, it offers a way to calculate quantum Lyapunov ex-
ponents, thereby unambiguously quantifying the degree of
chaos within the system [50–55]. Similar to the classical
protocol [66], this is done by following the separation of
two initially close wave-packet centroids in phase space
(〈Q̂〉, 〈P̂ 〉) evolving according to Eq. (4) under the same noise
realization [54,55].

Specifically, the quantum Lyapunov exponent is defined as

λ = lim
t→∞ lim

d0→0

ln (dt/d0)

t
, (6)

where dt = [�Q(t )2 + �P (t )2]1/2 is the dimensionless
phase-space distance between two quantum trajectories with
differences in the average position and average momentum
of the two trajectories given by �Q(t ) = 〈Q̂1〉 − 〈Q̂2〉 and
�P (t ) = 〈P̂1〉 − 〈P̂2〉, respectively. The two quantum tra-
jectories are initially prepared in coherent states displaced
(in phase space) from each other by a small distance d0 =
dt=0 (i.e., |α1〉 = |α〉 and |α2〉 = |α + d0〉), and then evolved
stochastically via Eq. (4) under the same noise realization,
which corresponds to the same measurement record. Using
this approach, it was shown in Ref. [55] that the choice of
measurement angle φ has a direct effect on the quantum
Lyapunov exponent and, therefore, on the emergence of chaos
in quantum systems.

IV. ADAPTIVE MEASUREMENT PROTOCOL FOR
CONTROLLING CHAOS

The continuous measurement approach described in
Sec. III naturally sets the scene for our main result: the design
of a protocol to control chaos by using a tunable, and exper-
imentally accessible, parameter. The parameter in question,
the LO phase φ, is intrinsically linked to the measurement
backaction, making our control mechanism fundamentally
quantum in nature.

The scheme we consider is shown in Fig. 2. The continuous
monitoring of the system gives a measurement signal I (t )
that allows for a real-time estimate of the quantum state.
In possession of this information, one can then design a
feedback action to influence the system. Motivated by the
effect that measurement has on the system dynamics [55], here
we propose to adaptively change the phase φ in real time, with
the intent to control the Lyapunov exponent of the system.

The design of an effective control strategy relies on first
understanding how the feedback action affects the system. For
that, we recall a fact observed in Ref. [55]: The stretches and
foldings induced by the chaotic dynamics generate interfer-
ence fringes in the Wigner function of the system (see top
panel of Fig. 3), and these lead to the suppression of chaos
in the quantum regime. Since these interference fringes are
associated with quantum coherence, destroying them shifts
the dynamics towards the classical chaotic behavior. There-
fore, in order to enhance (suppress) chaos, our state-dependent
controller chooses the LO phase φ such that the measurement
destroys the interference fringes in the state’s Wigner function
at the fastest (slowest) possible rate. More precisely, this rate
of fringe destruction is determined by the direction of the
interference fringes in phase space (θf ) relative to the axis of
measurement (determined solely by φ), with fast destruction
rates occurring when these axes are aligned. Our control
protocol then consists of estimating the fringe structure in
real time and picking a φ(t ) that would maximize the control
objective.

Automating the process of determining the direction of the
interference fringes in the Wigner function can be done by ex-
amining the probability distributions for different quadrature
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FIG. 3. Wigner functions and corresponding phase quadrature projections Xθ=0 and Xθ=π/2 for (a) a Schrödinger cat state |ψcat〉 ∝ |α〉 +
| − α〉 and (b)–(d) three snapshots typically seen in the evolution of the quantum Duffing oscillator. Here θ = 0 (top) and θ = π/2 (side)
are the only projections plotted. The number of peaks in the probability distributions is plotted as a function of quadrature θ for 32 different
angles. The maximum in the number of peaks corresponds to the direction perpendicular to the interference fringes (θmax − θf = π/2). Note
that the number of peaks in the bottom plots does not equal the number of peaks seen in the probability distributions. This is a numerical noise
associated with counting every turning point and does not affect the outcome of the search.

measurements:

PXθ
= |〈Xθ |ψ〉|2, (7)

where |Xθ 〉 is an eigenstate of the quadrature operator X̂θ .
To understand how this can be used to estimate the fringe
structure, let us look at the particular case of the Schrödinger
cat state |ψcat〉 ∝ |α〉 + | − α〉 shown in Fig. 3(a). Projection
onto the X̂0 quadrature is given by the top red plot in Fig. 3(a).
Here, a measurement of X̂0 distinguishes between the two
coherent states, resulting in two peaks. In contrast, the pro-
jection onto the X̂π/2 quadrature (the red plot to the left of the
Wigner function plot) reveals the overlap of the two coherent
states, resulting in interference fringes and a large number
of peaks. As shown directly below the Wigner function plot,
looking at the number of peaks as a function of projection
angle θ reveals that the peak distribution is narrowly centered
around θ = π/2 [the 〈P̂ 〉 axis], which is perpendicular to
the interference fringe axis. This shows that the angle that
maximizes the number of peaks (θmax) is a good indicator of
the direction that is perpendicular to the fringes in the Wigner
function.

In the actual quantum Duffing oscillator, the nonlinear
dynamics lead to interference fringe patterns with more com-
plexity than those of a Schrödinger cat state. Examples of
the Wigner functions for typical evolved states that arise
during this evolution are plotted in Figs. 3(b)–3(d). Al-
though more complicated, these Wigner functions still present
a reasonably-well-defined direction in the fringe structure,
which can be determined by finding the angle that leads to
the maximum number of peaks in PXθ

, as explained above.
In summary, our protocol consists of the following steps:
(i) Starting from a given |ψ (t )〉, calculate PXθ

for various
θ .

(ii) Count the number of peaks for each PXθ
and find θmax.

(iii) To maximize (minimize) the Lyapunov exponent,
choose φ(t ) = θf = θmax − π/2 (φ(t ) = θmax).

(iv) Use the value of φ(t ) from (iii) in Eq. (4) to calculate
the new state |ψ (t + dt )〉.

(v) Repeat steps (i) to (iv).
Full details of the numerical implementation of these steps are
given in the appendix.

V. RESULTS

We implemented the adaptive measurement scheme de-
scribed in Sec. IV for a range of scaling parameters β (span-
ning the transition from the quantum regime to the classical
regime) and two distinguishable strategies: maximization and
minimization of the Lyapunov exponent λ. The results are
shown in Fig. 4 for both cases; specifically, where the LO
phase is set to always measure along an axis parallel (φ =
θf , blue line, square points) or perpendicular (φ = θf + π/2,
green line, crosses) to the interference fringes. To assess the
effectiveness of our adaptive protocol, we compare with the
best nonadaptive strategy by displaying the curves that maxi-
mize (black line, triangles) and minimize (red line, circles) λ

for a fixed LO phase.
The adaptive maximization strategy leads to Lyapunov

exponents that are always larger than the best fixed-angle
scenario (φ = 0). By destroying coherent interference effects
and localizing the state faster, the adaptive case allows the
quantum system to track the classical chaotic dynamics more
closely, increasing λ. Further evidence of this is provided by
looking at the dynamical evolution of the Wigner function (see
Fig. 5, top), showing states that are more localized and possess
less interference, and are therefore more classical in nature.
The opposite adaptive strategy, the one designed to sup-
press chaos, also works effectively, giving negative Lyapunov
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FIG. 4. The quantum Lyapunov exponent λ as a function of β for
adaptive measurements (φ = θf , blue squares, and φ = θf + π/2,
green crosses) and fixed LO measurements (φ = 0, black triangles,
and φ = π/2, red circles). Here � = 0.10, g = 0.3, � = 1, and the
classical system is chaotic with λcl = 0.16. Each point is averaged
over 10 different noise realizations and the shaded area within the
dashed lines signifies twice the standard error.

exponents for all values of β. In this case, the adaptive choice
of monitoring angle leads to the preservation of quantum
interference effects and therefore to highly nonclassical states
with a large spread in phase space, as seen in the Wigner
functions of Fig. 5 (bottom).

Interestingly, the adaptive λ-maximization scheme gives
positive Lyapunov exponents for much larger values of β

(up to 0.5), showing that the adaptive protocol pushes the
emergence of chaos deep into the quantum regime—and much
further than what is possible with a fixed LO phase. This is
remarkable behavior given that quantum noise is expected
to dominate the dynamics at these large values of β, and
so one would think that the choice of measurement is ir-
relevant. This is clearly the case for the fixed measurement
(see Fig. 4), where the quantum Lyapunov exponent for all

monitoring schemes other than λ-maximization converge to
roughly the same negative value, indicating regular dynamics.
In stark contrast, our λ-maximization protocol is able to
sustain chaotic dynamics even at this scale.

Although our adaptive λ-maximization scheme can signif-
icantly enhance chaos, the adaptive λ-minimization scheme
does not provide significantly enhanced regularity over the
fixed measurement. This is a consequence of using metric (7)
to choose the measurement quadrature angle φ at each time
point. The aim is to find the direction of interference fringes in
the Wigner function and choose a measurement angle parallel
(perpendicular) to this direction in order to enhance (sup-
press) chaos. However, the metric (7) becomes less effective
when the state is highly nonclassical and delocalized. This
is shown clearly in the Wigner function plots of Fig. 5(b),
in particular at time �t = 70. In this case, the large degree
of delocalization means that there is no well-defined single
direction of interference fringes. Consequently, in this regime
the adaptive control does not provide a substantially improved
performance over a fixed-angle measurement. When trying to
suppress chaos by picking a measurement that has the least
deleterious effect on quantum interferences, it is exactly this
highly delocalized regime that is encouraged. Therefore, it is
unsurprising that our adaptive measurement protocol provides
little benefit over a fixed measurement angle, if the goal is to
suppress chaos. In contrast, our metric is more effective when
the Wigner function is localized and the fringe direction better
defined [see Fig. 5(a) for �t = 70]. This is the scenario arising
from our strategy to enhance chaos: choosing measurements
that destroy coherence and keep the state localized.

VI. DISCUSSION

We briefly discuss the experimental prospects of realiz-
ing both the driven-damped quantum Duffing oscillator and
our adaptive measurement protocol. Superconducting circuits
are excellent candidate systems, due to their flexible ar-
chitecture, wide range of experimental parameters, and the

FIG. 5. Snapshots of the Wigner function for the first 100 cycles of the driving for both adaptive measurements [(a) φ = θ , and (b)
φ = θ + π/2]. The snapshots only show a single quantum trajectory (noise realization); however, all trajectories have similar evolution to that
depicted here. The corresponding Lyapunov exponents are (a) λ = 0.057 ± 0.001 and (b) λ = −0.025 ± 0.001.
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existence of demonstrated continuous probing [67]. Specif-
ically, superconducting circuits in a parallel circuit config-
uration (i.e., a rf-SQUID) could be used to experimentally
realize a quantum Duffing oscillator [57,68]. For the scheme
proposed in Ref. [57], β2 = e2/[3h̄ωCp(1 − Lp/LJ )], where
ω = 1/

√
CpLp, Cp is the capacitance of the Josephson junc-

tion in the circuit, L−1
p = L−1

J − L−1
p is the parallel inductance

formed from the Josephson inductance LJ and the geometric
inductance Lpe, and e is the charge of an electron. Using typ-
ical experimental parameters from Ref. [69], we estimate that
β ∼ 0.4 is currently achievable which, as shown in Fig. 4, is
a regime ideally suited for observing measurement-dependent
effects on the emergence of chaos.

Realizing our scheme with ultracold atomic gases is an-
other potential option. Ultracold atomic experiments have
previously been used to experimentally investigate the emer-
gence of chaos in the quantum kicked rotor [70–72]. A Bose–
Einstein condensate (BEC) provides the high optical densities
needed for real-time nondestructive imaging [73,74]. A non-
interacting BEC gives the single-particle behavior required to
realize the driven-damped quantum Duffing oscillator. A non-
interacting gas can be achieved by using an extremely dilute
sample or by extinguishing the interactions via a Feshbach
resonance [74,75]. The required double-well potential could
be created by superimposing a Gaussian barrier on a harmonic
potential:

V̂exp = 1

2
mω2

0x̂
2 + Ae−x̂2/2σ 2

≈ h̄ω0

[
1

2

(
1 − A

mω2
0σ

2

)
Q̂2 + 1

4

(
h̄A

2m2ω3
0σ

4

)
Q̂4

]
.

(8)

The choice of barrier height A = 2mω2
0σ

2 realizes the needed
potential [see Eq. (1)] with β2 = h̄/(mω0σ

2). There are a
number of techniques for creating this potential, including
via an optical lattice [76] or spatial light modulation [77].
For the 780 nm transition of 85Rb, a barrier waist of σ ∼
10 μm is easily achievable. For typical trapping frequencies
ω0 ∈ 2π × [5, 100] Hz, this gives β ∼ 0.1–0.5.

These simple estimates suggest that state-of-the-art exper-
iments in both superconducting circuits and ultracold atomic
gases are promising platforms for experimentally investigat-
ing the relationship between measurement and chaos and are
capable of observing chaotic dynamics deep within the quan-
tum regime. Experimentally, one possible approach to infer
the degree of chaos would be time series analysis [78,79].
This requires acquisition of large data sets, which is possible
in experiments, but computationally expensive for large-scale
quantum simulations. Theoretically, it is much simpler to
calculate Lyapunov exponents directly.

Although our initial investigations have revealed that this
adaptive measurement scheme shows promise, our model did
not include the effect of detection inefficiency. Detection inef-
ficiency could affect both the emergence of chaotic dynamics
and the effectiveness of our adaptive measurement protocol.
For the quantum Duffing oscillator, numerical simulations
have shown positive Lyapunov exponents with measurement
efficiencies as low as 20% [57]. These Lyapunov exponents
were also shown to be robust to small errors in the system

parameters. Measurement efficiencies as high as 80% have
been reported in recent superconducting circuit experi-
ments [80]. Similar detection efficiencies are possible in BEC
systems at the cost of introducing heating, the effects of which
would require further investigation.

In addition to perfect detection efficiency, our model as-
sumes that the underlying estimate of the system state used
to effect feedback (through the choice of quadrature measure-
ment angle) precisely corresponds to the underlying system
state. Although conditional master equations are known to be
robust to imperfections in such estimates, which arise due to
imperfect estimates of the model parameters, technical noise
sources, and time delays, relaxing this assumption through a
system-filter separation would provide crucial detail needed
for the experimental realization of our adaptive measurement
protocol [81]. This work has focused on the control of chaos
with continuous measurement in a single-particle system.
Many-body quantum chaos is a growing research field, due
to its potential connections to random unitaries [82], informa-
tion scrambling and holographic duality [83–85], nonequilib-
rium thermodynamics [86], and even quantum sensing [87].
Whether measurement can be used to meaningfully control
chaos in many-body quantum systems is an intriguing ques-
tion that warrants further investigation.

VII. CONCLUSION

In this work we have shown that the degree of chaos in a
quantum Duffing oscillator can be controlled by applying real-
time state-dependent feedback via an adaptive measurement
technique. The underlying mechanism for this control is the
rate at which the measurement backaction destroys interfer-
ence fringes in the state’s Wigner function. By adaptively
choosing measurements that are more (less) destructive, the
dynamics more (less) closely resemble the corresponding
classical trajectory, thereby enhancing (suppressing) chaos.
Using this adaptive measurement technique, we have shown
that the presence of chaos can be pushed further into the
quantum regime. This regime is more easily accessible for
certain experimental setups, potentially enabling new, detailed
studies into the emergence of chaos in quantum systems.
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APPENDIX: NUMERICAL SIMULATION

We numerically simulated the SSE (4) on a finite subspace
of N energy eigenstates of the harmonic oscillator by using
the software package XMDS2 [88]. That is, we write the
conditional state as |ψ〉 = ∑N−1

n=0 Cn(t )|n〉 and numerically
solve for the dynamics of the coefficients Cn(t ), governed by
the set of Stratonovich stochastic differential equations

dCn = −i

{
β2

4

√
(n + 1)(n + 2)(n + 3)(n + 4)Cn+4

+
√

(n + 1)(n + 2)

[
β2

4
(4n + 6) − 1

2
(1 + i�)

]
Cn+2

− g√
2β

cos (�t )
√

n + 1Cn+1 + β2

4
(6n2 + 6n + 3)Cn

− g√
2β

cos (�t )
√

nCn−1

+
√

n(n − 1)

[
β2

4
(4n − 2) − 1

2
(1 − i�)

]
Cn−2

+ β2

4

√
n(n − 1)(n − 2)(n − 3)Cn−4

}
dt

− n�Cndt − e2iφ�
√

(n + 1)(n + 1)Cn+2dt

+ 2�(〈â†〉 + 〈â〉e2iφ )
√

n + 1Cn+1dt

+
√

2�
√

n + 1Cn+1e
iφ ◦ dW, (A1)

where 〈â〉 = ∑N−2
n=0

√
n + 1C∗

nCn+1 and Cn = 0 for all n �
N . For our simulations, we use N = 64 basis states, a large
enough number such that |CN−4|2 + |CN−3|2 + |CN−2|2 +
|CN−1|2 < 10−4 at all times, while still small enough to be
numerically tractable.

For the adaptive protocol, we calculate the probability
distribution for a number of quadratures; this is given by

PXφ
= |〈Xφ|ψ〉|2

=
∣∣∣∣∣
∑

n

Cnψn(x)e−inφ

∣∣∣∣∣
2

, (A2)

where ψn(x) are the Hermite–Gauss functions

ψn(x) = (2nn!
√

π )−1/2e−x2/2Hn(x), (A3)

and Hn(x) are Hermite polynomials.
We use a grid-based search algorithm to determine the

optimum measurement phase for each time step. To do this,
we use a finite-difference method to calculate the derivative
of the probability distribution (7) for an equidistant grid of
LO angles φ ∈ [0, π ], allowing the number of peaks in the
distribution to be calculated. The angle θmax corresponding to
the maximum number of peaks gives an axis perpendicular
to the interference fringes (θf + π/2). To enhance chaos we
adjust the LO phase to φ = θf (parallel to fringes), whereas
to suppress chaos we choose φ = θf + π/2 (perpendicular to
fringes) for the next integration step of Eq. (A1). In order
for this grid-based search method to be effective, the grid of
LO angles used needs to be of sufficiently high resolution.
We found that, when suppressing chaos (φ = θf + π/2), a
grid of 32 angles was required, whereas for enhancing chaos
(φ = θf ), a coarser grid of 8 angles was sufficient.

We quantify the degree of chaos in our system by com-
puting the quantum Lyapunov exponent as in Ref. [55],
which is based on an adaptation of the usual classical pro-
cedure [66]. For our numerical calculations, one of the tra-
jectories is periodically reset towards the other one to remain
within the linear regime and ln (dt/d0), calculated before
every reset, is averaged over time. The perturbed trajectory
after the reset is a displaced version of the trajectory of
interest. The displacement is given by the initial distance
d0 in phase space, in the direction of expansion. The per-
turbed trajectory becomes |ψ2〉 = D(α)|ψ1〉, where D(α)
is the displacement operator and α = d0[(〈Q̂2〉 + i〈P̂2〉) −
(〈Q̂1〉 + i〈P̂1〉)]/(dtβ ) is the displacement in the direction of
expansion.

The simulations are run over 10 000 cycles of the
driving term (t = 104/�) for both the adaptive- and the
fixed-LO cases, and the final Lyapunov exponent is aver-
aged over multiple realizations (10 runs) of the stochastic
noise.
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