22 research outputs found

    Controlling chaos in the quantum regime using adaptive measurements

    Get PDF
    The continuous monitoring of a quantum system strongly influences the emergence of chaotic dynamics near the transition from the quantum regime to the classical regime. Here we present a feedback control scheme that uses adaptive measurement techniques to control the degree of chaos in the driven-damped quantum Duffing oscillator. This control relies purely on the measurement backaction on the system, making it a uniquely quantum control, and is only possible due to the sensitivity of chaos to measurement. We quantify the effectiveness of our control by numerically computing the quantum Lyapunov exponent over a wide range of parameters. We demonstrate that adaptive measurement techniques can control the onset of chaos in the system, pushing the quantum-classical boundary further into the quantum regime

    Stromal Cell-Derived Factor 1 Polymorphism in Retinal Vein Occlusion

    Get PDF
    BACKGROUND: Stromal cell-derived factor 1 (SDF1) has crucial role in the regulation of angiogenesis and ocular neovascularisation (NV). The purpose of this study was to evaluate the association between SDF1-3'G(801)A polymorphism and NV complications of retinal vein occlusion (RVO). METHODS: 130 patients with RVO (median age: 69.0, range 35-93 years; male/female- 58/72; 55 patients had central RVO, 75 patients had branch RVO) were enrolled in this study. In the RVO group, 40 (30.8%) patients were diagnosed with NV complications of RVO and 90 (69.2%) patients without NVs. The median follow up period was 40.3 months (range: 18-57 months). The SDF1-3'G(801)A polymorphism was detected by PCR-RFLP. Allelic prevalence was related to reference values obtained in the control group consisted of 125 randomly selected, age and gender matched, unrelated volunteers (median age: 68.0, range 36-95 years; male/female- 53/72). Statistical analysis of the allele and genotype differences between groups (RVO patients vs controls; RVO patients with NV vs RVO patients without NV) was determined by chi-squared test. P value of <0.05 was considered statistically significant. RESULTS: Hardy-Weinberg criteria was fulfilled in all groups. The SDF1-3'G(801)A allele and genotype frequencies of RVO patients were similar to controls (SDF1-3'A allele: 22.3% vs 20.8%; SDF1-3'(801)AA: 5.4% vs 4.8%, SDF1-3'(801)GG: 60.8% vs 63.2%). The frequency of SDF1-3'(801)AA and SDF1-3'(801)GA genotypes, as well as the SDF1-3'(801)A allele frequency were higher in RVO patients with NV versus in patients without NV complication (SDF1-3'(801)AA+AG genotypes: 57.5% vs 31.1%, p = 0.008; SDF1-3'(801)A allele: 35.0% vs 16.7%, p = 0.002) or versus controls (SDF1-3'(801)AA+AG genotypes 57.5% vs 36.8%, p = 0.021; SDF1-3'(801)A allele: 35.0% vs 20.8% p = 0.01). Carrying of SDF1-3'(801)A allele increased the risk of neovascularisation complications of RVO by 2.69 (OR, 95% CI = 1.47-4.93). CONCLUSION: These findings suggest that carrying SDF1-3'(801)A allele plays a role in the development of neovascular complications in retinal vein occlusion

    Association between retinal vein occlusion, axial length and vitreous chamber depth measured by optical low coherence reflectometry.

    Get PDF
    BACKGROUND: Results of ocular biometric measurements in retinal vein occlusion (RVO) eyes are still inconclusive and controversial. The aim of this study was to evaluate the association between ocular axial length (AL), vitreous chamber depth (VCD) and both central (CRVO) and branch retinal vein occlusions (BRVO) using optical low coherence reflectometry (OLCR). METHODS: Both eyes of 37 patients with unilateral CRVO (mean age: 66 +/- 14 years, male:female - 21:16) and 46 patients with unilateral BRVO (mean age: 63 +/- 12 years, male:female - 24:22) were enrolled in this study. The control group consisted of randomly selected single eyes of 67 age and gender matched volunteers without the presence or history of RVO (mean age: 64 +/- 14 years, male:female - 34:33). Optical biometry was performed by OLCR biometer (LenStar LS 900). Average keratometry readings, central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), AL and VCD of eyes with RVO were compared with those of fellow eyes using paired t-tests and with those of control eyes using independent t-tests. RESULTS: Mean CCT, ACD and LT, average keratometry readings of affected RVO eyes, unaffected fellow eyes and control eyes was not statistically different in either groups. In eyes with CRVO mean AL and VCD of affected eyes were significantly shorter than those of control eyes (p < 0.001, p < 0.05), mean difference in AL and VCD between the affected and control eyes was 0.56 +/- 0.15 mm and 0.45 +/- 0.19 mm, respectively. In eyes with BRVO, mean AL of the affected eyes was significantly shorter with a mean difference of 0.57 +/- 0.15 mm (p < 0.001) and the VCD was significantly shorter with a mean difference of 0.61 +/- 0.15 mm (p < 0.001) comparing with the control eyes. CONCLUSION: Shorter AL and VCD might be a potential anatomical predisposing factor for development either of CRVO or BRVO
    corecore