353 research outputs found
Heisenberg-limited metrology with information recycling
Information recycling has been shown to improve the sensitivity of atom interferometers by exploiting atom-light entanglement. In this Rapid Communication, we apply information recycling to an interferometer where the input quantum state has been partially transferred from some donor system. We demonstrate that when the quantum state of this donor system is from a particular class of number-correlated Heisenberg-limited states, information recycling yields a Heisenberg-limited phase measurement. Crucially, this result holds irrespective of the fraction of the quantum state transferred to the interferometer input and also for a general class of number-conserving quantum-state-transfer processes, including ones that destroy the first-order phase coherence between the branches of the interferometer. This result could have significant applications in Heisenberg-limited atom interferometry, where the quantum state is transferred from a Heisenberg-limited photon source, and in optical interferometry where the loss can be monitored
Precision atomic gravimeter based on Bragg diffraction
We present a precision gravimeter based on coherent Bragg diffraction of
freely falling cold atoms. Traditionally, atomic gravimeters have used
stimulated Raman transitions to separate clouds in momentum space by driving
transitions between two internal atomic states. Bragg interferometers utilize
only a single internal state, and can therefore be less susceptible to
environmental perturbations. Here we show that atoms extracted from a
magneto-optical trap using an accelerating optical lattice are a suitable
source for a Bragg atom interferometer, allowing efficient beamsplitting and
subsequent separation of momentum states for detection. Despite the inherently
multi-state nature of atom diffraction, we are able to build a Mach-Zehnder
interferometer using Bragg scattering which achieves a sensitivity to the
gravitational acceleration of with an
integration time of 1000s. The device can also be converted to a gravity
gradiometer by a simple modification of the light pulse sequence.Comment: 13 pages, 11 figure
Observation of a Modulational Instability in Bose-Einstein condensates
We observe the breakup dynamics of an elongated cloud of condensed Rb
atoms placed in an optical waveguide. The number of localized spatial
components observed in the breakup is compared with the number of solitons
predicted by a plane-wave stability analysis of the nonpolynomial nonlinear
Schr\"odinger equation, an effective one-dimensional approximation of the
Gross-Pitaevskii equation for cigar-shaped condensates. It is shown that the
numbers predicted from the fastest growing sidebands are consistent with the
experimental data, suggesting that modulational instability is the key
underlying physical mechanism driving the breakup.Comment: 6 pages, 5 figure
Polarization and Strong Infra-Red Activity in Compressed Solid Hydrogen
Under a pressure of ~150 GPa solid molecular hydrogen undergoes a phase
transition accompanied by a dramatic rise in infra-red absorption in the vibron
frequency range. We use the Berry's phase approach to calculate the electric
polarization in several candidate structures finding large, anisotropic dynamic
charges and strongly IR-active vibron modes. The polarization is shown to be
greatly affected by the overlap between the molecules in the crystal, so that
the commonly used Clausius-Mossotti description in terms of polarizable,
non-overlapping molecular charge densities is inadequate already at low
pressures and even more so for the compressed solid.Comment: To appear in Phys. Rev. Let
Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
AbstractThe skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV4Se8, a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges.</jats:p
Differential Regulatory Role of Pituitary Adenylate Cyclase–Activating Polypeptide in the Serum-Transfer Arthritis Model
OBJECTIVE:
Pituitary adenylate cyclase-activating polypeptide (PACAP) expressed in capsaicin-sensitive sensory neurons and immune cells has divergent functions in inflammatory and pain processes. This study was undertaken to investigate the involvement of PACAP in a mouse model of rheumatoid arthritis.
METHODS:
Arthritis was induced in PACAP(-/-) and wild-type (PACAP(+/+) ) mice by K/BxN serum transfer. General features of the disease were investigated by semiquantitative scoring, plethysmometry, and histopathologic analysis. Mechano- and thermonociceptive thresholds and motor functions were also evaluated. Metabolic activity was assessed by positron emission tomography. Bone morphology was measured by in vivo micro-computed tomography, myeloperoxidase activity and superoxide production by bioluminescence imaging with luminol and lucigenin, respectively, and vascular permeability by fluorescent indocyanine green dye study.
RESULTS:
PACAP(+/+) mice developed notable joint swelling, reduced grasping ability, and mechanical (but not thermal) hyperalgesia after K/BxN serum transfer. In PACAP(-/-) mice clinical scores and edema were significantly reduced, and mechanical hyperalgesia and motor impairment were absent, throughout the 2-week period of observation. Metabolic activity and superoxide production increased in the tibiotarsal joints of wild-type mice but were significantly lower in PACAP(-/-) animals. Myeloperoxidase activity in the ankle joints of PACAP(-/-) mice was significantly reduced in the early phase of arthritis, but increased in the late phase. Synovial hyperplasia was also significantly increased, and progressive bone spur formation was observed in PACAP-deficient mice only.
CONCLUSION:
In PACAP-deficient mice with serum-transfer arthritis, joint swelling, vascular leakage, hyperalgesia, and early inflammatory cell accumulation are reduced; in the later phase of the disease, immune cell function and bone neoformation are increased. Elucidation of the underlying pathways of PACAP activity may open promising new avenues for development of therapy in inflammatory arthritis.
© 2014 The Authors. Arthritis & Rheumatology is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology
Long-term Clinical and Cost-effectiveness of Early Endovenous Ablation in Venous Ulceration: A Randomized Clinical Trial
Importance One-year outcomes from the Early Venous Reflux Ablation (EVRA) randomized trial showed accelerated venous leg ulcer healing and greater ulcer-free time for participants who are treated with early endovenous ablation of lower extremity superficial reflux.Objective To evaluate the clinical and cost-effectiveness of early endovenous ablation of superficial venous reflux in patients with venous leg ulceration.Design, Setting, and Participants Between October 24, 2013, and September 27, 2016, the EVRA randomized clinical trial enrolled 450 participants (450 legs) with venous leg ulceration of less than 6 months’ duration and superficial venous reflux. Initially, 6555 patients were assessed for eligibility, and 6105 were excluded for reasons including ulcer duration greater than 6 months, healed ulcer by the time of randomization, deep venous occlusive disease, and insufficient superficial venous reflux to warrant ablation therapy, among others. A total of 426 of 450 participants (94.7%) from the vascular surgery departments of 20 hospitals in the United Kingdom were included in the analysis for ulcer recurrence. Surgeons, participants, and follow-up assessors were not blinded to the treatment group. Data were analyzed from August 11 to November 4, 2019.Interventions Patients were randomly assigned to receive compression therapy with early endovenous ablation within 2 weeks of randomization (early intervention, n = 224) or compression with deferred endovenous treatment of superficial venous reflux (deferred intervention, n = 226). Endovenous modality and strategy were left to the preference of the treating clinical team.Main Outcomes and Measures The primary outcome for the extended phase was time to first ulcer recurrence. Secondary outcomes included ulcer recurrence rate and cost-effectiveness.Results The early-intervention group consisted of 224 participants (mean [SD] age, 67.0 [15.5] years; 127 men [56.7%]; 206 White participants [92%]). The deferred-intervention group consisted of 226 participants (mean [SD] age, 68.9 [14.0] years; 120 men [53.1%]; 208 White participants [92%]). Of the 426 participants whose leg ulcer had healed, 121 (28.4%) experienced at least 1 recurrence during follow-up. There was no clear difference in time to first ulcer recurrence between the 2 groups (hazard ratio, 0.82; 95% CI, 0.57-1.17; P = .28). Ulcers recurred at a lower rate of 0.11 per person-year in the early-intervention group compared with 0.16 per person-year in the deferred-intervention group (incidence rate ratio, 0.658; 95% CI, 0.480-0.898; P = .003). Time to ulcer healing was shorter in the early-intervention group for primary ulcers (hazard ratio, 1.36; 95% CI, 1.12-1.64; P = .002). At 3 years, early intervention was 91.6% likely to be cost-effective at a willingness to pay of £20 000 (45 995) per quality-adjusted life year.Conclusions and Relevance Early endovenous ablation of superficial venous reflux was highly likely to be cost-effective over a 3-year horizon compared with deferred intervention. Early intervention accelerated the healing of venous leg ulcers and reduced the overall incidence of ulcer recurrence
The physics of dynamical atomic charges: the case of ABO3 compounds
Based on recent first-principles computations in perovskite compounds,
especially BaTiO3, we examine the significance of the Born effective charge
concept and contrast it with other atomic charge definitions, either static
(Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static
and dynamical charges are not driven by the same underlying parameters. A
unified treatment of dynamical charges in periodic solids and large clusters is
proposed. The origin of the difference between static and dynamical charges is
discussed in terms of local polarizability and delocalized transfers of charge:
local models succeed in reproducing anomalous effective charges thanks to large
atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor
the physical picture based upon transfer of charges. Various results concerning
barium and strontium titanates are presented. The origin of anomalous Born
effective charges is discussed thanks to a band-by-band decomposition which
allows to identify the displacement of the Wannier center of separated bands
induced by an atomic displacement. The sensitivity of the Born effective
charges to microscopic and macroscopic strains is examined. Finally, we
estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe
- …