344 research outputs found

    Global flood depth-damage functions: Methodology and the database with guidelines

    Get PDF
    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or per land-use class. Many countries have developed flood damage models using depth-damage curves based on analysis of past flood events and on expert judgement. However, the fact that such damage curves are not available for all regions hampers damage assessments in some areas. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems a globally consistent database of depth-damage curves has been developed. This dataset contains damage curves depicting fractional damage function of water depth as well as maximum damage values for a variety of assets and land use classes. Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations or use of specific building material. This dataset can be used for consistent supra-national scale flood damage assessments, and guide assessment in countries where no damage model is currently available.JRC.C.6-Economics of Climate Change, Energy and Transpor

    Evaluation of nutritional and medicinal properties of "Bacopa monnieri" biomass and preparations

    Get PDF
    Bacopa monnieri (Scrophulariaceae) is a well-known plant and has been used by humans for several thousand years. In traditional Hindu medicine, it is one of the most important medicinal plants. The aim of the work was to determine the content of Fe, Mg, and Zn and selected organic compounds before and after extraction into the artificial digestive juices obtained from preparations containing B. monnieri. Commercial preparations in the form of tablets and capsules and B. monnieri shoot cultures were used in the experiment. The metal content in the considered mineralized samples was analyzed by atomic absorption spectrometry and organic compounds by RP-HPLC method. The maximum measured content of the metals released into the digestive juices was as follows: Fe ñ 32.85; Mg ñ 367.51; and Zn ñ 16.41 mg/100 g of the preparation. The existing research shows that metals are best released into the artificial digestive juices from the B. monnieri shoot cultures, and least efficiently from the commercial preparations available in the form of tablets. The phenolic compounds analyzed in the methanol extracts and the extracts of the artificial digestive juices were as follows: protocatechuic acid, p-hydroxybenzoic acid, neochlorogenic acid, chlorogenic acid, isochlorogenic acid, caffeic acid, ferulic acid, cynaroside, trifolin, and luteolin. Bacoside A was only determined in the extracts from the B. monnieri shoot cultures. The experimental results revealed that B. monnieri distributed in the form of tablets did not break down in the artificial digestive juices during the considered time intervals

    The Role of Biological Diversity in Agroecosystems and Organic Farming

    Get PDF
    Ecosystems are the basis of life and all human activities. Conservation of biological diversity is very important for the proper functioning of the ecosystem and for delivering ecosystem services. Maintaining high biodiversity in agroecosystems makes agricultural production more sustainable and economically viable. Agricultural biodiversity ensures, for example, pollination of crops, biological crop protection, maintenance of proper structure and fertility of soils, protection of soils against erosion, nutrient cycling, and control of water flow and distribution. The effects of the loss of biodiversity may not be immediately apparent, but they may increase the sensitivity of the ecosystems to various abiotic and biotic stresses. The combination of biodiversity conservation with profitable food production is one of the tasks of modern sustainable agriculture that faces the necessity of reconciling the productive, environmental, and social goals. As further intensification of production and increase in the use of chemical pesticides, fertilizers, and water to increase yields are increasingly criticized, global agriculture is looking for other biological and agrotechnical methods in order to meet the requirements of global food production

    AISI 316L-hydroxyapatite sintered composite biomaterials

    Get PDF
    The combinations of good biocompatibility of hydroxyapatite and good mechanical properties of 316L steel should lead to obtain better biomaterial. 316L-hydroxyapatite composites were produced by the PM technology. Microstructure and properties of these materials were affected by chemical composition of powders mixture and sintering temperature. Sintering temperature of 1240°C and hydroxyapatite addition of 3 wt. % provide to obtain the best density and hardness sintered 316L-hydroxyapatite compositions

    Microstructure and properties of sintered 410L steel with copper addition

    Get PDF
    In the present study copper modificated 410L stainless steel was investigated. This steel was fabricated based on powders, by the pressing and sintering. By varying amount of copper and sintering temperature the properties of the 410L stainless steel can be improved. At sintering temperature of 1240°C and at high copper levels the microstructure of steel is predominately martensitic. The sintered density of steel increases as the copper level increases, with a drop-off in density at 4 w/o Cu. It has been shown that stainless steels with higher copper levels have higher hardness and better density in comparison to steels sintered in 1260°C. In general, higher sintering temperature and low copper levels favor the formation of ferrite. An examination of the microstructures of these steels reveals that they are a mixture of ferrite and martensite

    Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System

    Get PDF
    The aim of this study was to examine the sustainability performance of organic and low-input conventional farms with the sustainability assessment tool—RISE 3.0. It is an indicator-based method for holistic assessment of sustainability of agricultural production at farm level. Ten organic and 10 conventional farms from eastern Poland, Lublin province were assessed. According to the thresholds levels of the RISE method, organic farms performed positively for 7 out of 10 themes, while the values of the other 3 topics, biodiversity, working conditions, and economic viability, were at medium level. Conventional farms reached positive scores for 9 out of 10 themes. The only middle-performing theme was biodiversity. None of the two farm types had the lowest, problematic scores for examined themes. For the theme biodiversity and two indicators (greenhouse gas balance and intensity of agricultural production), significant differences between farming systems were found. Biodiversity performance, an important indicator of sustainability, estimated with the RISE system, was highly correlated with measured on-field weed flora and Orthoptera biodiversity of farms. High soil acidity and low crop productivity, improper weed regulation, and energy management were the most common problems in both types of farms. Working hours and wage and income levels were also assessed as being low. Recommendations to improve the sustainability of both organic and conventional farms are presented

    Characterization of mAb6-9-1 monoclonal antibody against hemagglutinin of avian influenza virus H5N1 and its engineered derivative, single-chain variable fragment antibody

    Get PDF
    Hemagglutinin (HA), as a major surface antigen of influenza virus, is widely used as a target for production of neutralizing antibodies. Monoclonal antibody, mAb6-9-1, directed against HA of highly pathogenic avian influenza virus A/swan/Poland/305-135V08/2006(H5N1) was purified from mouse hybridoma cells culture and characterized. The antigenic specificity of mAb6-9-1 was verified by testing its cross-reactivity with several variants of HA. The mimotopes recognized by mAb6-9-1 were selected from two types of phage display peptide libraries. The comparative structural model of the HA variant used for antibody generation was developed to further facilitate epitope mapping. Based on the sequences of the affinity- selected polypeptides and the structural model of HA the epitope was located to the region near the receptor binding site (RBS). Such localization of the epitope recognized by mAb6-9-1 is in concordance with its moderate hemagglutination inhibiting activity and its antigenic specificity. Additionally, total RNA isolated from the hybridoma cell line secreting mAb6-9-1 was used for obtaining two variants of cDNA encoding recombinant single-chain variable fragment (scFv) antibody. To ensure high production level and solubility in bacterial expression system, the scFv fragments were produced as chimeric proteins in fusion with thioredoxin or displayed on a phage surface after cloning into the phagemid vector. Specificity and affinity of the recombinant soluble and phage-bound scFv were assayed by suitable variants of ELISA test. The observed differences in specificity were discussed

    Cognitive functions in patients with liver cirrhosis : a tendency to commit more memory errors

    Get PDF
    Background: Minimal hepatic encephalopathy (MHE) is the mildest form of hepatic encephalopathy (HE). For diagnostic purposes, 2 alternative batteries of psychometric screening tests are recommended. They differ from each other in terms of the cognitive domains assessed. The research was designed to provide a profile of cognitive functioning in patients with liver cirrhosis, using an assessment that covers a wider range of cognitive functions than the usual screening battery. Material and Methods: We examined 138 persons, including 88 with liver cirrhosis and 50 healthy volunteers. The Mini Mental State Examination (MMSE) was used for screening and excluding advanced cognitive impairment. Then, to assess cognitive functions in more detail, the following tests were used: Auditory Verbal Learning Test (AVLT), Letter and Semantic Fluency Tests (LF and SF), Trail Making Test (TMT A&B), Digit Symbol Test (DST), Block Design Test (BDT), and Mental Rotation Test (MRT). The MRT task has not been used in MHE diagnosis so far. Finally, 57 patients and 48 controls took part in the entire study. Results: Patients with liver cirrhosis commit significantly more errors of intrusions in the AVLT during the delayed free recall trial. Results significantly deviating from the norm in at least 2 tests were found only in 7 cirrhosis patients. Conclusions: The results do not provide any specific profile of cognitive disturbances in MHE, but suggest that cirrhosis patients have a tendency to commit more memory errors, probably due to subtle impairments of executive function
    corecore