11 research outputs found

    Analysis of cooling and heating system with Peltier cell

    No full text
    The article presents a developed cooling/heating system with a Peltier cell. This system is intended for local improvement of thermal comfort. The interaction between the Peltier module, a water block and the heat sink with a fan has been investigated. A thermal model of the cooling/heating system has been developed, as well as software for determining parameters of the Peltier modules and for analysis of the system operation conditions has been implemented. The obtained results of calculations were compared with the results of experimental tests

    Analysis of the Partial Demagnetization Process of Magnets in a Line Start Permanent Magnet Synchronous Motor

    No full text
    The paper justifies the validity of analyzing the impact of temperature and the process of partial demagnetization of magnets on the operating parameters of machines. To analyze this impact, a field model of coupled electromagnetic and thermal phenomena in a permanent magnet synchronous motor was proposed. The non-linearity of the magnetic circuit, the effect of temperature on the magnetic, electrical and thermal properties of the materials as well as the developed method of modeling the process of partial demagnetization of the magnet were taken into account. Based on this model, an algorithm and software were developed to analyze the effect of temperature and the process of partial demagnetization of magnets on the work of the line start permanent magnet synchronous motor (LSPMSM). The elaborated software was used to study the effect of temperature during the motor starting phase on the magnetization state of the magnets after the start-up process. The calculation results were compared to the results of experimental studies. The experimental tests were carried out on a specially constructed test stand. The results of the research on the process of partial demagnetization of the magnets are presented and the conclusions resulting therefrom formulated

    Comparison analysis of induction and line-start synchronous reluctance motors

    No full text
    The article presents research on the development of a low-cost line start synchronous reluctance motor (LSSRM) on the basis of components of a mass-produced three-phase low-power cage induction motor (IM). The aim was to obtain the best functional parameters for both the steady-state work condition and the asynchronous start-up. In the design-optimization calculations of the LSSRM, a field model of electromagnetic phenomena developed using the MagNet program was used. Laboratory tests were carried out on the designed and constructed prototype of the LSSRM, and the obtained results were compared with the results of an IM test

    A New Method of Reducing the Inrush Current and Improving the Starting Performance of a Line-Start Permanent-Magnet Synchronous Motor

    No full text
    This paper presents a new method of reducing the inrush current and improving the starting performance of a line-start permanent-magnet synchronous motor (LSPMSM). The novelty of the proposed method relies on the selection of the time instant of the connection of the stator winding to the grid, for which the smallest values of the amplitudes of inrush currents are obtained. To confirm the effectiveness of the developed method of limiting the inrush current, simulations and experimental studies were carried out. The algorithm and dedicated computer code developed by the authors for the analysis of transient coupled phenomena in the LSPMSM were used to study the impact of the time instant of connection of the winding to the grid on the motor start-up process. The algorithm was based on a field model of coupled electromagnetic and thermal phenomena in the studied motor. To verify the developed model of the phenomena and the proposed method, experimental research was carried out on a purpose-built computerised test stand. Good concordance between the results of the experiments and simulations confirmed the high reliability of the proposed model, as well as the effectiveness of the developed approach in limiting the inrush current and improving the starting performance of LSPMSMs

    An analysis of a start-up process in LSPMSMs with aluminum and copper rotor bars considering the coupling of electromagnetic and thermal phenomena

    No full text
    The paper presents an FE model of coupled electromagnetic and thermal phenomena in Line Start Permanent Magnet Synchronous Motors (LSPMSMs). An algorithm for solving equations of a discrete model using the FEM has been presented. On the basis of this algorithm the author’s personally developed software for the analysis of coupled electromagnetic-thermal phenomena in the LSPMS motors was elaborated. This software was used to analyze the start-up process of motors with identical stator and rotor magnetic circuits and different materials of the starting cage. The start-up process of motors with the squirrel-cage made of aluminum and copper was considered. The influence of temperature on the start-up process has been taken into account. The results of simulation tests were compared with the results of measurements

    Finite Element Analysis of Magnetic Field Exciter for Direct Testing of Magnetocaloric Materials’ Properties

    No full text
    The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed

    Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors

    No full text
    BACKGROUND: VHL inactivation is the most established molecular characteristic of clear cell renal cell carcinoma (ccRCC), with only a few additional genes implicated in development of this kidney tumor. In recently published ccRCC gene expression meta-analysis study we identified a number of deregulated genes with limited information available concerning their biological role, represented by gene transcripts belonging to transmembrane proteins family (TMEMs). TMEMs are predicted to be components of cellular membranes, such as mitochondrial membranes, ER, lysosomes and Golgi apparatus. Interestingly, the function of majority of TMEMs remains unclear. Here, we analyzed expression of ten TMEM genes in the context of ccRCC progression and development, and characterized these proteins bioinformatically. METHODS: The expression of ten TMEMs (RTP3, SLC35G2, TMEM30B, TMEM45A, TMEM45B, TMEM61, TMEM72, TMEM116, TMEM207 and TMEM213) was measured by qPCR. T-test, Pearson correlation, univariate and multivariate logistic and Cox regression were used in statistical analysis. The topology of studied proteins was predicted with Metaserver, together with PSORTII, Pfam and Localizome tools. RESULTS: We observed significant deregulation of expression of 10 analyzed TMEMs in ccRCC tumors. Cluster analysis of expression data suggested the down-regulation of all tested TMEMs to be a descriptor of the most advanced tumors. Logistic and Cox regression potentially linked TMEM expression to clinical parameters such as: metastasis, Fuhrman grade and overall survival. Topology predictions classified majority of analyzed TMEMs as type 3 and type 1 transmembrane proteins, with predicted localization mainly in ER. CONCLUSIONS: The massive down-regulation of expression of TMEM family members suggests their importance in the pathogenesis of ccRCC and the bioinformatic analysis of TMEM topology implies a significant involvement of ER proteins in ccRCC pathology.status: publishe

    Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors

    No full text
    BACKGROUND: VHL inactivation is the most established molecular characteristic of clear cell renal cell carcinoma (ccRCC), with only a few additional genes implicated in development of this kidney tumor. In recently published ccRCC gene expression meta-analysis study we identified a number of deregulated genes with limited information available concerning their biological role, represented by gene transcripts belonging to transmembrane proteins family (TMEMs). TMEMs are predicted to be components of cellular membranes, such as mitochondrial membranes, ER, lysosomes and Golgi apparatus. Interestingly, the function of majority of TMEMs remains unclear. Here, we analyzed expression of ten TMEM genes in the context of ccRCC progression and development, and characterized these proteins bioinformatically. METHODS: The expression of ten TMEMs (RTP3, SLC35G2, TMEM30B, TMEM45A, TMEM45B, TMEM61, TMEM72, TMEM116, TMEM207 and TMEM213) was measured by qPCR. T-test, Pearson correlation, univariate and multivariate logistic and Cox regression were used in statistical analysis. The topology of studied proteins was predicted with Metaserver, together with PSORTII, Pfam and Localizome tools. RESULTS: We observed significant deregulation of expression of 10 analyzed TMEMs in ccRCC tumors. Cluster analysis of expression data suggested the down-regulation of all tested TMEMs to be a descriptor of the most advanced tumors. Logistic and Cox regression potentially linked TMEM expression to clinical parameters such as: metastasis, Fuhrman grade and overall survival. Topology predictions classified majority of analyzed TMEMs as type 3 and type 1 transmembrane proteins, with predicted localization mainly in ER. CONCLUSIONS: The massive down-regulation of expression of TMEM family members suggests their importance in the pathogenesis of ccRCC and the bioinformatic analysis of TMEM topology implies a significant involvement of ER proteins in ccRCC pathology

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    No full text
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains
    corecore