645 research outputs found

    Falloff of the Weyl scalars in binary black hole spacetimes

    Full text link
    The peeling theorem of general relativity predicts that the Weyl curvature scalars Psi_n (n=0...4), when constructed from a suitable null tetrad in an asymptotically flat spacetime, fall off asymptotically as r^(n-5) along outgoing radial null geodesics. This leads to the interpretation of Psi_4 as outgoing gravitational radiation at large distances from the source. We have performed numerical simulations in full general relativity of a binary black hole inspiral and merger, and have computed the Weyl scalars in the standard tetrad used in numerical relativity. In contrast with previous results, we observe that all the Weyl scalars fall off according to the predictions of the theorem.Comment: 7 pages, 3 figures, published versio

    Operational significance of the deviation equation in relativistic geodesy

    Full text link
    Deviation equation: Second order differential equation for the 4-vector which measures the distance between reference points on neighboring world lines in spacetime manifolds. Relativistic geodesy: Science representing the Earth (or any planet), including the measurement of its gravitational field, in a four-dimensional curved spacetime using differential-geometric methods in the framework of Einstein's theory of gravitation (General Relativity).Comment: 9 pages, 4 figures, contribution to the "Encyclopedia of Geodesy". arXiv admin note: text overlap with arXiv:1811.1047

    Some notes on the Kruskal - Szekeres completion

    Full text link
    The Kruskal - Szekeres (KS) completion of the Schwarzschild spacetime is open to Synge's methodological criticism that the KS procedure generates "good" coordinates from "bad". This is addressed here in two ways: First I generate the KS coordinates from Israel coordinates, which are also "good", and then I generate the KS coordinates directly from a streamlined integration of the Einstein equations.Comment: One typo correcte

    Explicit Global Coordinates for Schwarzschild and Reissner-Nordstroem

    Get PDF
    We construct coordinate systems that cover all of the Reissner-Nordstroem solution with m>|q| and m=|q|, respectively. This is possible by means of elementary analytical functions. The limit of vanishing charge q provides an alternative to Kruskal which, to our mind, is more explicit and simpler. The main tool for finding these global charts is the description of highly symmetrical metrics by two-dimensional actions. Careful gauge fixing yields global representatives of the two-dimensional theory that can be rewritten easily as the corresponding four-dimensional line elements.Comment: 12 pages, 3 Postscript figures, sign error in Eq. (37) and below corrected, references and Note added; to appear in Class. Quantum Gra

    A Radiation Scalar for Numerical Relativity

    Get PDF
    This letter describes a scalar curvature invariant for general relativity with a certain, distinctive feature. While many such invariants exist, this one vanishes in regions of space-time which can be said unambiguously to contain no gravitational radiation. In more general regions which incontrovertibly support non-trivial radiation fields, it can be used to extract local, coordinate-independent information partially characterizing that radiation. While a clear, physical interpretation is possible only in such radiation zones, a simple algorithm can be given to extend the definition smoothly to generic regions of space-time.Comment: 4 pages, 1 EPS figur

    No-Go Theorem in Spacetimes with Two Commuting Spacelike Killing Vectors

    Full text link
    Four-dimensional Riemannian spacetimes with two commuting spacelike Killing vectors are studied in Einstein's theory of gravity, and found that no outer apparent horizons exist, provided that the dominant energy condition holds.Comment: latex, 1 figure, version published in Gen. Relativ. Grav., 37, 1919-1926 (2005

    Moderate deviations for the determinant of Wigner matrices

    Full text link
    We establish a moderate deviations principle (MDP) for the log-determinant logdet(Mn)\log | \det (M_n) | of a Wigner matrix MnM_n matching four moments with either the GUE or GOE ensemble. Further we establish Cram\'er--type moderate deviations and Berry-Esseen bounds for the log-determinant for the GUE and GOE ensembles as well as for non-symmetric and non-Hermitian Gaussian random matrices (Ginibre ensembles), respectively.Comment: 20 pages, one missing reference added; Limit Theorems in Probability, Statistics and Number Theory, Springer Proceedings in Mathematics and Statistics, 201

    Transverse frames for Petrov type I spacetimes: a general algebraic procedure

    Get PDF
    We develop an algebraic procedure to rotate a general Newman-Penrose tetrad in a Petrov type I spacetime into a frame with Weyl scalars Ψ1\Psi_{1} and Ψ3\Psi_{3} equal to zero, assuming that initially all the Weyl scalars are non vanishing. The new frame highlights the physical properties of the spacetime. In particular, in a Petrov Type I spacetime, setting Ψ1\Psi_{1} and Ψ3\Psi_{3} to zero makes apparent the superposition of a Coulomb-type effect Ψ2\Psi_{2} with transverse degrees of freedom Ψ0\Psi_{0} and Ψ4\Psi_{4}.Comment: 10 pages, submitted to Classical Quantum Gravit

    An explanation of the Newman-Janis Algorithm

    Full text link
    After the original discovery of the Kerr metric, Newman and Janis showed that this solution could be ``derived'' by making an elementary complex transformation to the Schwarzschild solution. The same method was then used to obtain a new stationary axisymmetric solution to Einstein's field equations now known as the Kerr-newman metric, representing a rotating massive charged black hole. However no clear reason has ever been given as to why the Newman-Janis algorithm works, many physicist considering it to be an ad hoc procedure or ``fluke'' and not worthy of further investigation. Contrary to this belief this paper shows why the Newman-Janis algorithm is successful in obtaining the Kerr-Newman metric by removing some of the ambiguities present in the original derivation. Finally we show that the only perfect fluid generated by the Newman-Janis algorithm is the (vacuum) Kerr metric and that the only Petrov typed D solution to the Einstein-Maxwell equations is the Kerr-Newman metric.Comment: 14 pages, no figures, submitted to Class. Quantum Gra

    A Simple Family of Analytical Trumpet Slices of the Schwarzschild Spacetime

    Full text link
    We describe a simple family of analytical coordinate systems for the Schwarzschild spacetime. The coordinates penetrate the horizon smoothly and are spatially isotropic. Spatial slices of constant coordinate time tt feature a trumpet geometry with an asymptotically cylindrical end inside the horizon at a prescribed areal radius R0R_0 (with 0<R0M0<R_{0}\leq M) that serves as the free parameter for the family. The slices also have an asymptotically flat end at spatial infinity. In the limit R0=0R_{0}=0 the spatial slices lose their trumpet geometry and become flat -- in this limit, our coordinates reduce to Painlev\'e-Gullstrand coordinates.Comment: 7 pages, 3 figure
    corecore