27 research outputs found

    Fractional exhaled nitric oxide as a potential biomarker for radiation pneumonitis in patients with non-small cell lung cancer:A pilot study

    Get PDF
    Introduction The aim of the study was to investigate repetitive fractional exhaled nitric oxide (FeNO) measurements during high-dose radiation therapy (HDRT) and to evaluate the use of FeNO to predict symptomatic radiation pneumonitis (RP) in patients being treated for non-small cell lung cancer (NSCLC). Materials and methods A total of 50 patients with NSCLC referred for HDRT were enrolled. FeNO was measured at baseline, weekly during HDRT, one month- and every third month after HDRT for a one-year follow-up period. The mean FeNO(visit 0-6) was calculated using the arithmetic mean of the baseline and weekly measurements during HDRT. Patients with grade ≥ 2 of RP according to the Common Terminology Criteria for Adverse Events (CTCAE) were considered symptomatic. Results A total of 42 patients completed HDRT and weekly FeNO measurements. Grade ≥ 2 of RP was diagnosed in 24 (57%) patients. The mean FeNO(visit 0-6) ± standard deviation in patients with and without RP was 15.0 ± 7.1 ppb (95%CI: 12.0–18.0) and 10.3 ± 3.4 ppb (95%CI: 8.6–11.9) respectively with significant differences between the groups (p = 0.0169, 95%CI: 2.3–2.6). The leave-one-out cross-validated cut-off value of the mean FeNO(visit 0-6) ≥ 14.8 ppb was predictive of grade ≥ 2 RP with a specificity of 71% and a positive predictive value of 78%. Conclusions The mean FeNO(visit 0-6) in patients with symptomatic RP after HDRT for NSCLC was significantly higher than in patients without RP and may serve as a potential biomarker for RP

    BAP1 loss by immunohistochemistry predicts improved survival to first-line platinum and pemetrexed chemotherapy for patients with pleural mesothelioma: A validation study

    Get PDF
    Introduction: Pleural mesothelioma (PM) is an aggressive malignancy with no identified predictive biomarkers. We assessed whether tumor BAP1 status is a predictive biomarker for survival in patients receiving first-line combination platinum and pemetrexed therapy. Methods: PM cases (n = 114) from Aalborg, Denmark, were stained for BAP1 on tissue microarrays. Demographic, clinical, and survival data were extracted from registries and medical records. Surgical cases were excluded. BAP1 status was associated with overall survival (OS) by Cox regression and Kaplan-Meier methods. Results were validated in an independent cohort from Perth, Australia (n = 234). Results: BAP1 loss was found in 62% and 60.3% of all Danish and Australian samples, respectively. BAP1 loss was an independent predictor of OS in multivariate analyses corrected for histological subtype, performance status, age, sex, and treatment (hazard ratio = 2.49, p \u3c 0.001, and 1.48, p = 0.01, respectively). First-line platinum and pemetrexed-treated patients with BAP1 loss had significantly longer median survival than those with retained BAP1 in both the Danish (20.1 versus 7.3 mo, p \u3c 0.001) and Australian cohorts (19.6 versus 11.1 mo, p \u3c 0.01). Survival in patients with BAP1 retained and treated with platinum and pemetrexed was similar as in those with best supportive care. There was a higher OS in patients with best supportive care with BAP1 loss, but it was significant only in the Australian cohort (16.8 versus 8.3 mo, p \u3c 0.01). Conclusions: BAP1 is a predictive biomarker for survival after first-line combination platinum and pemetrexed chemotherapy and a potential prognostic marker in PM. BAP1 in tumor is a promising clinical tool for treatment stratification

    Effective ultra-low doses of erlotinib in patients with EGFR sensitising mutation

    No full text
    We describe three cases of patients with advanced adenocarcinoma of the lung and epidermal growth factor receptor (EGFR) mutation treated with erlotinib 25 mg/day and 25 mg every second day, being equal to one-sixth and one-twelfth of the recommended dose. The mean age of our patients was above 70 with a WHO performance status 1 before and during the treatment. The reasons for erlotinib dose reduction were rash, diarrhoea and fatigue. The decision was a result of lack of other treatment options and radiological response on standard doses. We did not observe any liver enzyme abnormalities. However, the post-treatment creatinine increased significantly. As of February 2014, our patients are still on treatment with tolerable side effects and improved quality of life. These findings indicate that some patients responding to erlotinib with noxious side effects could have clinical benefit in doses much lower than recommended

    Identifying metabolic alterations in newly diagnosed small cell lung cancer patients

    Get PDF
    BackgroundSmall cell lung cancer (SCLC) is a malignant disease with poor prognosis. At the time of diagnosis most patients are already in a metastatic stage. Current diagnosis is based on imaging, histopathology, and immunohistochemistry, but no blood-based biomarkers have yet proven to be clinically successful for diagnosis and screening. The precise mechanisms of SCLC are not fully understood, however, several genetic mutations, protein and metabolic aberrations have been described. We aim at identifying metabolite alterations related to SCLC and to expand our knowledge relating to this aggressive cancer. MethodsA total of 30 serum samples of patients with SCLC, collected at the time of diagnosis, and 25 samples of healthy controls were included in this study. The samples were analyzed with nuclear magnetic resonance spectroscopy. Multivariate, univariate and pathways analyses were performed. ResultsSeveral metabolites were identified to be altered in the pre-treatment serum samples of small-cell lung cancer patients compared to healthy individuals. Metabolites involved in tricarboxylic acid cycle (succinate: fold change (FC) = 2.4, p = 0.068), lipid metabolism (LDL triglyceride: FC = 1.3, p = 0.001; LDL-1 triglyceride: FC = 1.3, p = 0.012; LDL-2 triglyceride: FC = 1.4, p = 0.009; LDL-6 triglyceride: FC = 1.5, p < 0.001; LDL-4 cholesterol: FC = 0.5, p = 0.007; HDL-3 free cholesterol: FC = 0.7, p = 0.002; HDL-4 cholesterol FC = 0.8, p < 0.001; HDL-4 apolipoprotein-A1: FC = 0.8, p = 0.005; HDL-4 apolipoprotein-A2: FC ≥ 0.7, p ≤ 0.001), amino acids (glutamic acid: FC = 1.7, p < 0.001; glutamine: FC = 0.9, p = 0.007, leucine: FC = 0.8, p < 0.001; isoleucine: FC = 0.8, p = 0.016; valine: FC = 0.9, p = 0.032; lysine: FC = 0.8, p = 0.004; methionine: FC = 0.8, p < 0.001; tyrosine: FC = 0.7, p = 0.002; creatine: FC = 0.9, p = 0.030), and ketone body metabolism (3-hydroxybutyric acid FC = 2.5, p < 0.001; acetone FC = 1.6, p < 0.001), among other, were found deranged in SCLC. ConclusionsThis study provides novel insight into the metabolic disturbances in pre-treatment SCLC patients, expanding our molecular understanding of this malignant disease

    Circulating microvesicles and exosomes in small cell lung cancer by quantitative proteomics

    Get PDF
    Background: Early detection of small cell lung cancer (SCLC) crucially demands highly reliable markers. Growing evidence suggests that extracellular vesicles carry tumor cell-specific cargo suitable as protein markers in cancer. Quantitative proteomic profiling of circulating microvesicles and exosomes can be a high-throughput platform for discovery of novel molecular insights and putative markers. Hence, this study aimed to investigate proteome dynamics of plasma-derived microvesicles and exosomes in newly diagnosed SCLC patients to improve early detection. Methods: Plasma-derived microvesicles and exosomes from 24 healthy controls and 24 SCLC patients were isolated from plasma by either high-speed- or ultracentrifugation. Proteins derived from these extracellular vesicles were quantified using label-free mass spectrometry and statistical analysis was carried out aiming at identifying significantly altered protein expressions between SCLC patients and healthy controls. Furthermore, significantly expressed proteins were subjected to functional enrichment analysis to identify biological pathways implicated in SCLC pathogenesis. Results: Based on fold change (FC) ≥ 2 or ≤ 0.5 and AUC ≥ 0.70 (p < 0.05), we identified 10 common and 16 and 17 unique proteins for microvesicles and exosomes, respectively. Among these proteins, we found dysregulation of coagulation factor XIII A (Log2 FC = − 1.1, p = 0.0003, AUC = 0.82, 95% CI: 0.69–0.96) and complement factor H-related protein 4 (Log2 FC = 1.2, p = 0.0005, AUC = 0.82, 95% CI; 0.67–0.97) in SCLC patients compared to healthy individuals. Our data may indicate a novel tumor-suppressing role of blood coagulation and involvement of complement activation in SCLC pathogenesis. Conclusions: In comparing SCLC patients and healthy individuals, several differentially expressed proteins were identified. This is the first study showing that circulating extracellular vesicles may encompass specific proteins with potential diagnostic attributes for SCLC, thereby opening new opportunities as novel non-invasive markers
    corecore