5,573 research outputs found
Detection of a single-charge defect in a metal-oxide-semiconductor structure using vertically coupled Al and Si single-electron transistors
An Al-AlO_x-Al single-electron transistor (SET) acting as the gate of a
narrow (~ 100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET)
can induce a vertically aligned Si SET at the Si/SiO_2 interface near the
MOSFET channel conductance threshold. By using such a vertically coupled Al and
Si SET system, we have detected a single-charge defect which is tunnel-coupled
to the Si SET. By solving a simple electrostatic model, the fractions of each
coupling capacitance associated with the defect are extracted. The results
reveal that the defect is not a large puddle or metal island, but its size is
rather small, corresponding to a sphere with a radius less than 1 nm. The small
size of the defect suggests it is most likely a single-charge trap at the
Si/SiO_2 interface. Based on the ratios of the coupling capacitances, the
interface trap is estimated to be about 20 nm away from the Si SET.Comment: 5 pages and 5 figure
Nanostructured electrodes for thermionic and thermo-tunneling devices
Recently, new quantum features have been studied in the area of ridged
quantum wells (RQW). Periodic ridges on the surface of the quantum well layer
impose additional boundary conditions on the electron wave function and reduce
the quantum state density. Electrons, rejected from forbidden quantum states,
have to occupy the states with higher energy. As a result, Fermi energy in RQW
increases and work function (WF) decreases. We investigate low WF electrode,
com-posed from a metal RQW layer and a base substrate. The substrate material
was selected so that electrons were confined to the RQW. The WF value depends
on ridge geometry and electron confinement. We calculate WF in the metal RQW
films grown both on a semiconductor and metal substrates. In the case of
semiconductor substrate, wide band gap materials are preferable as they allow
more reduction in RQW work function. In the case of metal substrate, low Fermi
energy materials are preferable. For most material pairs, the WF was reduced
dramatically. Such structures, can serve as electrodes for room temperature
thermionic and thermotunnel energy converters and coolers.Comment: 8 pages, 5 figures, 2 table
Energy and momentum relaxation dynamics of hot holes in modulation doped GaInNAs/GaAs quantum wells
We present the studies of energy and momentum relaxation dynamics of nonequilibrium holes in GaxIn1−xNyAs1−y/GaAs quantum well modulation doped with Be. Experimental results show that the real-space transfer (RST) of hot holes occurs via thermionic emission from the high-mobility GaInNAs quantum wells into the low-mobility GaAs barriers at a threshold electric field of F ∼ 6 kV/cm at T = 13 K. At this field the hole drift velocity saturates at vd ∼ 1×107 cm/s. A slight increase in the field above the threshold leads to the impact ionization of acceptors in the barriers by the nonequilibrium holes. We observe and model theoretically a negative differential mobility effect induced by RST that occurs at an electric field of F ∼ 7 kV/cm. The observed current surge at electric fields above 7 kV/cm is attributed to the hole multiplication induced by shallow impurity breakdown in the GaAs barrier and impact ionization in the high-field domain regime associated with the packet of RST of holes in the well
Electronic Interface Reconstruction at Polar-Nonpolar Mott Insulator Heterojunctions
We report on a theoretical study of the electronic interface reconstruction
(EIR) induced by polarity discontinuity at a heterojunction between a polar and
a nonpolar Mott insulators, and of the two-dimensional strongly-correlated
electron systems (2DSCESs) which accompany the reconstruction. We derive an
expression for the minimum number of polar layers required to drive the EIR,
and discuss key parameters of the heterojunction system which control 2DSCES
properties. The role of strong correlations in enhancing confinement at the
interface is emphasized.Comment: 7 pages, 6 figures, some typos correcte
Shockley-Ramo theorem and long-range photocurrent response in gapless materials
Scanning photocurrent maps of gapless materials, such as graphene, often
exhibit complex patterns of hot spots positioned far from current-collecting
contacts. We develop a general framework that helps to explain the unusual
features of the observed patterns, such as the directional effect and the
global character of photoresponse. We show that such a response is captured by
a simple Shockley-Ramo-type approach. We examine specific examples and show
that the photoresponse patterns can serve as a powerful tool to extract
information about symmetry breaking, inhomogeneity, chirality, and other local
characteristics of the system.Comment: 7 pgs, 3 fg
Mechanism for current saturation and energy dissipation in graphene transistors
From a combination of careful and detailed theoretical and experimental
studies, we demonstrate that the Boltzmann theory including all scattering
mechanisms gives an excellent account, with no adjustable parameters, of high
electric field transport in single as well as double-oxide graphene
transistors. We further show unambiguously that scattering from the substrate
and superstrate surface optical (SO) phonons governs the high field transport
and heat dissipation over a wide range of experimentally relevant parameters.
Models that neglect SO phonons altogether or treat them in a simple
phenomenological manner are inadequate. We outline possible strategies for
achieving higher current and complete saturation in graphene devices.Comment: revtex, 5 pages, 3 figures, to appear in Phys. Rev. Lett
Dielectric and polarization experiments in high loss dielectrics: a word of caution
The recent quest for improved functional materials like high permittivity
dielectrics and/or multiferroics has triggered an intense wave of research.
Many materials have been checked for their dielectric permittivity or their
polarization state. In this report, we call for caution when samples are
simultaneously displaying insulating behavior and defect-related conductivity.
Many oxides containing mixed valent cations or oxygen vacancies fall in this
category. In such cases, most of standard experiments may result in effective
high dielectric permittivity which cannot be related to ferroelectric
polarization. Here we list few examples of possible discrepancies between
measured parameters and their expected microscopic origin
Gallium arsenide 55Fe X-ray-photovoltaic battery
The effects of temperature on the key parameters of a prototype GaAs 55Fe radioisotope X-ray microbattery were studied over the temperature range -20 °C to 70 °C. A p-i-n GaAs structure was used to collect the photons from a 254 Bq 55Fe radioisotope X-ray source. Experimental results showed that the open circuit voltage and the short circuit current decreased with increased temperature. The maximum output power and the conversion efficiency of the device decreased at higher temperatures. For the reported microbattery, the highest maximum output power (1 pW, corresponding to 0.4 μW/Ci) was observed at -20 °C. A conversion efficiency of 9% was measured at -20 °C
Weak Localization and Antilocalization in Topological Insulator Thin Films with Coherent Bulk-Surface Coupling
We evaluate quantum corrections to conductivity in an electrically gated thin
film of a three-dimensional (3D) topological insulator (TI). We derive
approximate analytical expressions for the low-field magnetoresistance as a
function of bulk doping and bulk-surface tunneling rate. Our results reveal
parameter regimes for both weak localization and weak antilocalization, and
include diffusive Weyl semimetals as a special case.Comment: After publication, we have noticed and corrected two small but
potentially misleading typographic errors in Eqs. (2.27) and (2.29), where
the definitions of \tau_s and \tau_v were mistakenly switched. Once these
typographic errors are fixed, all the results remain unchanged. An Erratum
will be published in PR
Heterostructure unipolar spin transistors
We extend the analogy between charge-based bipolar semiconductor electronics
and spin-based unipolar electronics by considering unipolar spin transistors
with different equilibrium spin splittings in the emitter, base, and collector.
The current of base majority spin electrons to the collector limits the
performance of ``homojunction'' unipolar spin transistors, in which the
emitter, base, and collector all are made from the same magnetic material. This
current is very similar in origin to the current of base majority carriers to
the emitter in homojunction bipolar junction transistors. The current in
bipolar junction transistors can be reduced or nearly eliminated through the
use of a wide band gap emitter. We find that the choice of a collector material
with a larger equilibrium spin splitting than the base will similarly improve
the device performance of a unipolar spin transistor. We also find that a
graded variation in the base spin splitting introduces an effective drift field
that accelerates minority carriers through the base towards the collector.Comment: 9 pages, 2 figure
- …
