3,778 research outputs found

    The Contribution of Hot Electron Spin Polarization to the Magnetotransport in a Spin-Valve Transistor at Finite Temperatures

    Full text link
    The effect of spin mixing due to thermal spin waves and temperature dependence of hot electron spin polarization to the collector current in a spin-valve transistor has been theoretically explored. We calculate the collector current as well as the temperature dependence of magnetocurrent at finite temperatures to investigate the relative importance of spin mixing and hot electron spin polarization. In this study the inelastic scattering events in ferromagnetic layers have been taken into account to explore our interests. The theoretical calculations suggest that the temperature dependence of hot electron spin polarization has substantial contribution to the magnetotransport in the spin-valve transistor.Comment: 8 pages and 6 figure

    An optimised algorithm for ionized impurity scattering in Monte Carlo simulations

    Full text link
    We present a new optimised model of Brookes-Herring ionized impurity scattering for use in Monte Carlo simulations of semiconductors. When implemented, it greatly decreases the execution time needed for simulations (typically by a factor of the order of 100), and also properly incorporates the great proportion of small angle scatterings that are neglected in the standard algorithm. It achieves this performance by using an anisotropic choice of scattering angle which accurately mimics the true angular distribution of ionized impurity scattering.Comment: 5 page

    Joint Algorithm-Architecture Optimization of CABAC

    Get PDF
    This paper uses joint algorithm and architecture design to enable high coding efficiency in conjunction with high processing speed and low area cost. Specifically, it presents several optimizations that can be performed on Context Adaptive Binary Arithmetic Coding (CABAC), a form of entropy coding used in H.264/AVC, to achieve the throughput necessary for real-time low power high definition video coding. The combination of syntax element partitions and interleaved entropy slices, referred to as Massively Parallel CABAC, increases the number of binary symbols that can be processed in a cycle. Subinterval reordering is used to reduce the cycle time required to process each binary symbol. Under common conditions using the JM12.0 software, the Massively Parallel CABAC, increases the bins per cycle by 2.7 to 32.8× at a cost of 0.25 to 6.84% coding loss compared with sequential single slice H.264/AVC CABAC. It also provides a 2× reduction in area cost, and reduces memory bandwidth. Subinterval reordering reduces the critical path delay by 14 to 22%, while modifications to context selection reduces the memory requirement by 67%. This work demonstrates that accounting for implementation cost during video coding algorithms design can enable higher processing speed and reduce hardware cost, while still delivering high coding efficiency in the next generation video coding standard.Texas Instruments Incorporated (Graduate Women's Fellowship for Leadership in Microelectronics)Natural Sciences and Engineering Research Council of Canad

    Superconducting Quantum Point contacts and Maxwell Potential

    Full text link
    The quantization of the current in a superconducting quantum point contact is reviewed and the critical current is discussed at different temperatures depending on the carrier concentration as well by suggesting a constant potential in the semiconductor and then a Maxwell potential. When the Fermi wave length is comparable with the constriction width we showed that the critical current has a step-like variation as a function of the constriction width and the carrier concentration.Comment: 13 pages, 8 figures, some figures are clarified; scheduled to appear in an issue in MPLB Vo.21, (2007

    Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy

    Full text link
    As a consequence of elasticity, mechanical deformations of crystals occur on a length scale comparable to their thickness. This is exemplified by applying a homogeneous electric field to a multi-domain ferroelectric crystal: as one domain is expanding the adjacent ones are contracting, leading to clamping at the domain boundaries. The piezomechanically driven surface corrugation of micron-sized domain patterns in thick crystals using large-area top electrodes is thus drastically suppressed, barely accessible by means of piezoresponse force microscopy

    Voltage modulated electro-luminescence spectroscopy and negative capacitance - the role of sub-bandgap states in light emitting devices

    Full text link
    Voltage modulated electroluminescence spectra and low frequency ({\leq} 100 kHz) impedance characteristics of electroluminescent diodes are studied. Voltage modulated light emission tracks the onset of observed negative capacitance at a forward bias level for each modulation frequency. Active participation of sub-bandgap defect states in minority carrier recombination dynamics is sought to explain the results. Negative capacitance is understood as a necessary dielectric response to compensate any irreversible transient changes in the minority carrier reservoir due to radiative recombinations mediated by slowly responding sub-bandgap defects. Experimentally measured variations of the in-phase component of modulated electroluminescence spectra with forward bias levels and modulation frequencies support the dynamic influence of these states in the radiative recombination process. Predominant negative sign of the in-phase component of voltage modulated electroluminescence signal further confirms the bi-molecular nature of light emission. We also discuss how these states can actually affect the net density of minority carriers available for radiative recombination. Results indicate that these sub-bandgap states can suppress external quantum efficiency of such devices under high frequency operation commonly used in optical communication.Comment: 21 pages, 4 sets of figure

    Modulation of Thermoelectric Power of Individual Carbon Nanotubes

    Full text link
    Thermoelectric power (TEP) of individual single walled carbon nanotubes (SWNTs) has been measured at mesoscopic scales using a microfabricated heater and thermometers. Gate electric field dependent TEP-modulation has been observed. The measured TEP of SWNTs is well correlated to the electrical conductance across the SWNT according to the Mott formula. At low temperatures, strong modulations of TEP were observed in the single electron conduction limit. In addition, semiconducting SWNTs exhibit large values of TEP due to the Schottky barriers at SWNT-metal junctions.Comment: to be published in Phys. Rev. Let

    Debye relaxation in high magnetic fields

    Full text link
    Dielectric relaxation is universal in characterizing polar liquids and solids, insulators, and semiconductors, and the theoretical models are well developed. However, in high magnetic fields, previously unknown aspects of dielectric relaxation can be revealed and exploited. Here, we report low temperature dielectric relaxation measurements in lightly doped silicon in high dc magnetic fields B both parallel and perpendicular to the applied ac electric field E. For B//E, we observe a temperature and magnetic field dependent dielectric dispersion e(w)characteristic of conventional Debye relaxation where the free carrier concentration is dependent on thermal dopant ionization, magnetic freeze-out, and/or magnetic localization effects. However, for BperpE, anomalous dispersion emerges in e(w) with increasing magnetic field. It is shown that the Debye formalism can be simply extended by adding the Lorentz force to describe the general response of a dielectric in crossed magnetic and electric fields. Moreover, we predict and observe a new transverse dielectric response EH perp B perp E not previously described in magneto-dielectric measurements. The new formalism allows the determination of the mobility and the ability to discriminate between magnetic localization/freeze out and Lorentz force effects in the magneto-dielectric response.Comment: 19 pages, 6 figure

    Towards spin injection from silicon into topological insulators: Schottky barrier between Si and Bi2Se3

    Full text link
    A scheme is proposed to electrically measure the spin-momentum coupling in the topological insulator surface state by injection of spin polarized electrons from silicon. As a first approach, devices were fabricated consisting of thin (<100nm) exfoliated crystals of Bi2Se3 on n-type silicon with independent electrical contacts to silicon and Bi2Se3. Analysis of the temperature dependence of thermionic emission in reverse bias indicates a barrier height of 0.34 eV at the Si-Bi2Se3 interface. This robust Schottky barrier opens the possibility of novel device designs based on sub-band gap internal photoemission from Bi2Se3 into Si
    corecore