86 research outputs found

    Electronic and Magnetic Properties of ThCo 4 B

    Get PDF
    ThCo 4 B compound crystallizes in the hexagonal CeCo 4 B type structure. The electronic structure is calculated based on full-potential local--orbital full-relativistic method. The ab initio calculations showed that small magnetic moments (≈ 0.1 µB/atom) are formed on Th and B atoms, antiparallel to the moments on Co atoms equal to 1.55 and 0.43 µ B /atom for Co(2c) and Co(6i), respectively. The densities of states at the Fermi level are equal to 1.3 and 5.4 states/(eV spin f.u.) for spin up and down, respectively. These values are predominated by Co(3d) electrons. Introduction Recently uranium compounds have attracted interest because of many interesting properties such as the Pauli paramagnetism, spin fluctuations, heavy fermions, magnetic ordering, or superconductivity The aim of this paper is to calculate electronic structure of the ThCo 4 B compound based on a spin-polarized ab initio method

    Theoretical search for superconductivity in Sc3XB perovskites and weak ferromagnetism in Sc3X (X = Tl, In, Ga, Al)

    Full text link
    A possibility for a new family of intermetallic perovskite superconductors Sc3XB, with X = Tl, In, Ga and Al, is presented as a result of KKR electronic structure and pseudopotential phonon calculations. The large values of computed McMillan--Hopfield parameters on scandium suggest appearance of superconductivity in Sc3XB compounds. On the other hand, the possibility of weak itinerant ferromagnetic behavior of Sc3X systems is indicated by the small magnetic moment on Sc atoms in two cases of X =~ l and In. Also the electronic structure and resulting superconducting parameters for more realistic case of boron--deficient systems Sc3XB_x are computed using KKR--CPA method, by replacing boron atom with a vacancy. The comparison of the calculated McMillan--Hopfield parameters of the Sc3XB series with corresponding values in MgCNi3 and YRh3B superconductors is given, finding the favorable trends for superconductivity.Comment: 13 pages, 13 figures. v3 - revise

    Electronic properties of CeNiAl4 based on ab initio calculations and XPS measurements

    Get PDF
    The CeNiAl4 compound crystallizes in an orthorhombic YNiAl4-type structure with a Cmcm space group. The earlier susceptibility data and X-ray photoelectron spectroscopy (XPS) suggested a localized character of the 4f states in CeNiAl4 with a valence state close to a Ce3 ion. In this work we present a combined theoretical and experimental study of the electronic structure for the Kondo dense system CeNiAl4 based on the XPS data and ab initio calculations. Using the band structure calculations the theoretical XPS valence band spectra are evaluated. Below the Fermi energy the total density of states contains mainly 3d states of Ni hybridized with Ce 4f states

    The Electronic and Magnetic Properties of YbxGd1-xNi5 Systems

    Get PDF
    The intermetallic compounds YbxGd1¡xNi5 crystallize in the hexagonal CaCu5-type structure. Based on wide ranging SQUID-type magnetometer, it was shown that the saturation magnetization decreases with growing concentration of ytterbium. The opposite tendency was observed for the Sommerfeld coefficient obtained in the heat capacity measurements. These results are confirmed using ab initio band structure calculations

    Electronic Structure and X-Ray Photoemission Spectra of MPtSn (M = Ti, Zr, Hf)

    Get PDF
    The electronic structures of the half-Heusler isostructural compounds TiPtSn, ZrPtSn and HfPtSn were calculated and measured applying the X-ray photoemission spectroscopy. The (Ti, Zr, Hf)PtSn compounds have gaps between the occupied valence band and the empty conduction band, calculated as about 0.75, 1.12, and 1.09 eV, respectively. The calculations were done by the full-potential local orbitals method in the framework of the local spin-density approximation and partly also by the full-potential linear mu±n-tin orbitals method by the LmtART code. Experimental X-ray photoemission spectra were measured using photons of en- ergy of 1486.6 eV. The experimental and calculated spectra match quite well except a small shift in the energy scale

    Intermediate valence of CeNi2Al3 compound and its evidences: Theoretical and experimental approach

    Get PDF
    We present measurements of magnetic, transport and electronic properties obtained for polycrystalline CeNi2Al3 intermetallic compound. Magnetic susceptibility χ(T) was investigated in the range from 2 to 700 K, and its behavior is characteristic of a compound with unstable valence, varying between Ce3þ and Ce4þ. In the temperature range down to 2 K there was no trace of magnetic order, no anomalies in the temperature dependence of the specific heat were found. The Sommerfeld coefficient extracted from the linear term of the heat capacity takes a value of γ ¼ 21 mJ/(mol K2). The dependence of S(T) is linear up to about 25 K, which is symptomatic of a thermopower in the Fermi’s liquid regime. The structure of satellites in the Ce(3d) electron spectrum obtained by the X-ray photoelectron spectroscopy (XPS) method indicates that the states of Ce(4f) are of mixed valence character. Analysis of Ce(3d) states based on Gunnarsson-Sch€onhammer theory shows that the energy of hybridization of Ce(4f) states with a conduction band is about 78 meV. For more detailed information about electronic states the fully relativistic band structure was calculated within the density functional theory (DFT) for the first time. Below Fermi’s energy, the density of states is mainly formed by Ni(3d) states hybridized with Ce(4f) ones

    Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2

    Full text link
    Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab-initio band structure calculations performed within the density functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma -- No.74, Pearson symbol: oI24) with the lattice parameters: a = 7.1330(14) A, b = 9.7340(19) A, and c = 5.6040(11) A. Analysis of the magnetic and XPS data revealed the presence of well localized magnetic moments of trivalent cerium ions. All physical properties were found to be highly anisotropic over the whole temperature range studied, and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN = 4.70(1)K and their subsequent spin rearrangement at Tt = 4.48(1) K manifest themselves as distinct anomalies in the temperature characteristics of all investigated physical properties and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b-axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2, similar to that recently reported for an isostructural compound CeIr3Si2. The electronic band structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well reproduced the experimental XPS valence band spectrum.Comment: 32 pages, 12 figures, to appear in Physical Review

    Spin-polarization-induced structural selectivity in Pd3X_3X and Pt3X_3X (X=3dX=3d) compounds

    Full text link
    Spin-polarization is known to lead to important {\it magnetic} and {\it optical} effects in open-shell atoms and elemental solids, but has rarely been implicated in controlling {\it structural} selectivity in compounds and alloys. Here we show that spin-polarized electronic structure calculations are crucial for predicting the correct T=0T=0 crystal structures for Pd3X_3X and Pt3X_3X compounds. Spin-polarization leads to (i) stabilization of the L12L1_2 structure over the DO22DO_{22} structure in Pt3_3Cr, Pd3_3Cr, and Pd3_3Mn, (ii) to the stabilization of the DO22DO_{22} structure over the L12L1_2 structure in Pd3_3Co and to (iii) ordering (rather than phase-separation) in Pt3_3Co and Pd3_3Cr. The results are analyzed in terms of first-principles local spin density calculations.Comment: 4 pages, REVTEX, 3 eps figures, to appear in PR

    A first-principles comparison of the electronic properties of MgC_{y}Ni_{3} and ZnC_{y}Ni_{3} alloys

    Full text link
    First-principles, density-functional-based electronic structure calculations are employed to study the changes in the electronic properties of ZnC_{y}Ni_{3} and MgC_{y}Ni_{3} using the Korringa-Kohn-Rostoker coherent-potential approximation method in the atomic sphere approximation (KKR-ASA CPA). As a function of decreasing C at%, we find a steady decrease in the lattice constant and bulk modulus in either alloys. However, the pressure derivative of the bulk modulus displays an opposite trend. Following the Debye model, which relates the pressure derivative of the bulk modulus with the average phonon frequency of the crystal, it can thus be argued that ZnCNi_{3} and its disordered alloys posses a different phonon spectra in comparison to its MgCNi_{3} counterparts. This is further justified by the marked similarity we find in the electronic structure properties such as the variation in the density of states and the Hopfield parameters calculated for these alloys. The effects on the equation of state parameters and the density of states at the Fermi energy, for partial replacement of Mg by Zn are also discussed.Comment: 19 pages, 15 figure

    Phonon spectrum and soft-mode behavior of MgCNi_3

    Full text link
    Temperature dependent inelastic neutron-scattering measurements of the generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are compared with ab initio density functional calculations which suggest an incipient lattice instability of the stoichiometric compound with respect to Ni vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure
    corecore