112 research outputs found

    Die Transposons im Genom von Dictyostelium discoideum

    Get PDF
    Im Rahmen eines Genomsequenzierungsprojekts für Dictyostelium discoideum wurde der Genomgehalt an Transposons eingehend untersucht. Laut Analyse existieren mindestens 18 Transposonspezies mit einem Sequenzumfang von etwa 10 % des 34 Mbp großen Genoms. Es werden strukturelle Untersuchungen vorgestellt für eine Familie von non-LTR-Retrotransposons (TREs), deren Kopien mit hoher Spezifität in die Nachbarschaft von tRNA-Genen inserieren, für die DNA-Transposonfamilie Tdd-4 und für eine Familie neuartiger DNA-Transposons, die DDT-Elemente. Darüberhinaus wird analysiert und diskutiert, welchen Einfluß Transposonkopien auf die Durchführbarkeit einer chromosomenorientierten Schrotschußstrategie zur Genomsequenzierung haben

    Comparative analysis of sequence features involved in the recognition of tandem splice sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The splicing of pre-mRNAs is conspicuously often variable and produces multiple alternatively spliced (AS) isoforms that encode different messages from one gene locus. Computational studies uncovered a class of highly similar isoforms, which were related to tandem 5'-splice sites (5'ss) and 3'-splice sites (3'ss), yet with very sparse anecdotal evidence in experimental studies. To compare the types and levels of alternative tandem splice site exons occurring in different human organ systems and cell types, and to study known sequence features involved in the recognition and distinction of neighboring splice sites, we performed large-scale, stringent alignments of cDNA sequences and ESTs to the human and mouse genomes, followed by experimental validation.</p> <p>Results</p> <p>We analyzed alternative 5'ss exons (A5Es) and alternative 3'ss exons (A3Es), derived from transcript sequences that were aligned to assembled genome sequences to infer patterns of AS occurring in several thousands of genes. Comparing the levels of overlapping (tandem) and non-overlapping (competitive) A5Es and A3Es, a clear preference of isoforms was seen for tandem acceptors and donors, with four nucleotides and three to six nucleotides long exon extensions, respectively. A subset of inferred A5E tandem exons was selected and experimentally validated. With the focus on A5Es, we investigated their transcript coverage, sequence conservation and base-paring to U1 snRNA, proximal and distal splice site classification, candidate motifs for <it>cis</it>-regulatory activity, and compared A5Es with A3Es, constitutive and pseudo-exons, in <it>H. sapiens </it>and <it>M. musculus</it>. The results reveal a small but authentic enriched set of tandem splice site preference, with specific distances between proximal and distal 5'ss (3'ss), which showed a marked dichotomy between the levels of in- and out-of-frame splicing for A5Es and A3Es, respectively, identified a number of candidate NMD targets, and allowed a rough estimation of a number of undetected tandem donors based on splice site information.</p> <p>Conclusion</p> <p>This comparative study distinguishes tandem 5'ss and 3'ss, with three to six nucleotides long extensions, as having unusually high proportions of AS, experimentally validates tandem donors in a panel of different human tissues, highlights the dichotomy in the types of AS occurring at tandem splice sites, and elucidates that human alternative exons spliced at overlapping 5'ss posses features of typical splice variants that could well be beneficial for the cell.</p

    TassDB: a database of alternative tandem splice sites

    Get PDF
    Subtle alternative splice events at tandem splice sites are frequent in eukaryotes and substantially increase the complexity of transcriptomes and proteomes. We have developed a relational database, TassDB (TAndem Splice Site DataBase), which stores extensive data about alternative splice events at GYNGYN donors and NAGNAG acceptors. These splice events are of subtle nature since they mostly result in the insertion/deletion of a single amino acid or the substitution of one amino acid by two others. Currently, TassDB contains 114 554 tandem splice sites of eight species, 5209 of which have EST/mRNA evidence for alternative splicing. In addition, human SNPs that affect NAGNAG acceptors are annotated. The database provides a user-friendly interface to search for specific genes or for genes containing tandem splice sites with specific features as well as the possibility to download large datasets. This database should facilitate further experimental studies and large-scale bioinformatics analyses of tandem splice sites. The database is available at

    The Mating Pattern of Captive Naked Mole-Rats Is Best Described by a Monogamy Model

    Get PDF
    Naked mole-rats form colonies with a single reproductively active female surrounded by subordinate workers. Workers perform offspring care, construction and defense of the burrow system, and food supply. Such division of labor, called “cooperative breeding,” is strongly associated with the evolution of monogamous mating behavior, as seen in several mammalian lineages. This association is explained by the evolutionary theory of kin selection, according to which a subordinate adult may help to raise other’s offspring if they are in full sibling relationship. In conflict with this theory, the naked mole-rat is widely considered to be polyandrous, based on reports on multiple males contributing to a colony’s progeny. In order to resolve this contrast, we undertook an in-depth microsatellite-based kinship analysis on captive colonies. Four independent colonies comprising a total of 265 animals were genotyped using a panel of 73 newly established microsatellite markers. Our results show that each mole-rat colony contains a single monogamous breeder pair, which translates to a reproductive skew of 100% for both sexes. This finding, also in conjunction with previously published parental data, favors monogamy as the best-fitting model to describe naked mole-rat reproduction patterns. Polyandry or other polygamous reproduction models are disfavored and should be considered as exceptional. Overall, the empirical genetic data are in agreement with the kin selection theory.Peer Reviewe

    Haplotyping and copy number estimation of the highly polymorphic human beta-defensin locus on 8p23 by 454 amplicon sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The beta-defensin gene cluster (DEFB) at chromosome 8p23.1 is one of the most copy number (CN) variable regions of the human genome. Whereas individual DEFB CNs have been suggested as independent genetic risk factors for several diseases (e.g. psoriasis and Crohn's disease), the role of multisite sequence variations (MSV) is less well understood and to date has only been reported for prostate cancer. Simultaneous assessment of MSVs and CNs can be achieved by PCR, cloning and Sanger sequencing, however, these methods are labour and cost intensive as well as prone to methodological bias introduced by bacterial cloning. Here, we demonstrate that amplicon sequencing of pooled individual PCR products by the 454 technology allows in-depth determination of MSV haplotypes and estimation of DEFB CNs in parallel.</p> <p>Results</p> <p>Six PCR products spread over ~87 kb of DEFB and harbouring 24 known MSVs were amplified from 11 DNA samples, pooled and sequenced on a Roche 454 GS FLX sequencer. From ~142,000 reads, ~120,000 haplotype calls (HC) were inferred that identified 22 haplotypes ranging from 2 to 7 per amplicon. In addition to the 24 known MSVs, two additional sequence variations were detected. Minimal CNs were estimated from the ratio of HCs and compared to absolute CNs determined by alternative methods. Concordance in CNs was found for 7 samples, the CNs differed by one in 2 samples and the estimated minimal CN was half of the absolute in one sample. For 7 samples and 2 amplicons, the 454 haplotyping results were compared to those by cloning/Sanger sequencing. Intrinsic problems related to chimera formation during PCR and differences between haplotyping by 454 and cloning/Sanger sequencing are discussed.</p> <p>Conclusion</p> <p>Deep amplicon sequencing using the 454 technology yield thousands of HCs per amplicon for an affordable price and may represent an effective method for parallel haplotyping and CN estimation in small to medium-sized cohorts. The obtained haplotypes represent a valuable resource to facilitate further studies of the biomedical impact of highly CN variable loci such as the beta-defensin locus.</p

    The Dictyostelium genome encodes numerous RasGEFs with multiple biological roles

    Get PDF
    BACKGROUND: Dictyostelium discoideum is a eukaryote with a simple lifestyle and a relatively small genome whose sequence has been fully determined. It is widely used for studies on cell signaling, movement and multicellular development. Ras guanine-nucleotide exchange factors (RasGEFs) are the proteins that activate Ras and thus lie near the top of many signaling pathways. They are particularly important for signaling in development and chemotaxis in many organisms, including Dictyostelium. RESULTS: We have searched the genome for sequences encoding RasGEFs. Despite its relative simplicity, we find that the Dictyostelium genome encodes at least 25 RasGEFs, with a few other genes encoding only parts of the RasGEF consensus domains. All appear to be expressed at some point in development. The 25 genes include a wide variety of domain structures, most of which have not been seen in other organisms. The LisH domain, which is associated with microtubule binding, is seen particularly frequently; other domains that confer interactions with the cytoskeleton are also common. Disruption of a sample of the novel genes reveals that many have clear phenotypes, including altered morphology and defects in chemotaxis, slug phototaxis and thermotaxis. CONCLUSION: These results suggest that the unexpectedly large number of RasGEF genes reflects an evolutionary expansion of the range of Ras signaling rather than functional redundancy or the presence of multiple pseudogenes

    TassDB2 - A comprehensive database of subtle alternative splicing events

    Get PDF
    Background: Subtle alternative splicing events involving tandem splice sites separated by a short (2-12 nucleotides) distance are frequent and evolutionarily widespread in eukaryotes, and a major contributor to the complexity of transcriptomes and proteomes. However, these events have been either omitted altogether in databases on alternative splicing, or only the cases of experimentally confirmed alternative splicing have been reported. Thus, a database which covers all confirmed cases of subtle alternative splicing as well as the numerous putative tandem splice sites (which might be confirmed once more transcript data becomes available), and allows to search for tandem splice sites with specific features and download the results, is a valuable resource for targeted experimental studies and large-scale bioinformatics analyses of tandem splice sites. Towards this goal we recently set up TassDB (Tandem Splice Site DataBase, version 1), which stores data about alternative splicing events at tandem splice sites separated by 3 nt in eight species. \ud Description: We have substantially revised and extended TassDB. The currently available version 2 contains extensive information about tandem splice sites separated by 2-12 nt for the human and mouse transcriptomes including data on the conservation of the tandem motifs in five vertebrates. TassDB2 offers a user-friendly interface to search for specific genes or for genes containing tandem splice sites with specific features as well as the possibility to download result datasets. For example, users can search for cases of alternative splicing where the proportion of EST/mRNA evidence supporting the minor isoform exceeds a specific threshold, or where the difference in splice site scores is specified by the user. The predicted impact of each event on the protein is also reported, along with information about being a putative target for the nonsense-mediated decay \ud (NMD) pathway. Links are provided to the UCSC genome browser and other external resources.\ud Conclusion: TassDB2, available via http://www.tassdb.info, provides comprehensive resources for researchers interested in both targeted experimental studies and large-scale bioinformatics analyses of short distance tandem splice sites.\ud \ud doi: 10.1186/1471-2105-11-216\u

    Polymorphic segmental duplications at 8p23.1 challenge the determination of individual defensin gene repertoires and the assembly of a contiguous human reference sequence

    Get PDF
    BACKGROUND: Defensins are important components of innate immunity to combat bacterial and viral infections, and can even elicit antitumor responses. Clusters of defensin (DEF) genes are located in a 2 Mb range of the human chromosome 8p23.1. This DEF locus, however, represents one of the regions in the euchromatic part of the final human genome sequence which contains segmental duplications, and recalcitrant gaps indicating high structural dynamics. RESULTS: We find that inter- and intraindividual genetic variations within this locus prevent a correct automatic assembly of the human reference genome (NCBI Build 34) which currently even contains misassemblies. Manual clone-by-clone alignment and gene annotation as well as repeat and SNP/haplotype analyses result in an alternative alignment significantly improving the DEF locus representation. Our assembly better reflects the experimentally verified variability of DEF gene and DEF cluster copy numbers. It contains an additional DEF cluster which we propose to reside between two already known clusters. Furthermore, manual annotation revealed a novel DEF gene and several pseudogenes expanding the hitherto known DEF repertoire. Analyses of BAC and working draft sequences of the chimpanzee indicates that its DEF region is also complex as in humans and DEF genes and a cluster are multiplied. Comparative analysis of human and chimpanzee DEF genes identified differences affecting the protein structure. Whether this might contribute to differences in disease susceptibility between man and ape remains to be solved. For the determination of individual DEF gene repertoires we provide a molecular approach based on DEF haplotypes. CONCLUSIONS: Complexity and variability seem to be essential genomic features of the human DEF locus at 8p23.1 and provides an ongoing challenge for the best possible representation in the human reference sequence. Dissection of paralogous sequence variations, duplicon SNPs ans multisite variations as well as haplotypes by sequencing based methods is the way for future studies of interindividual DEF locus variability and its disease association
    corecore