3 research outputs found

    Thermodynamic, electronic and structural properties of Cu/CeO(2) surfaces and interfaces from first-principles DFT plus U calculations

    No full text
    The thermodynamic, structural and electronic properties of Cu-CeO(2) (ceria) surfaces and interfaces are investigated by means of density functional theory (DFT+U) calculations. We focus on model systems consisting of Cu atoms (i) supported by stoichiometric and reduced CeO(2) (111) surfaces, (ii) dispersed as substitutional solid solution at the same surface, as well as on (iii) the extended Cu(111)/CeO(2)(111) interface. Extensive charge reorganization at the metal-oxide contact is predicted for ceria-supported Cu adatoms and nanoparticles, leading to Cu oxidation, ceria reduction, and interfacial Ce(3+) ions. The calculated thermodynamics predict that Cu adatoms on stoichiometric surfaces are more stable than on O vacancies of reduced surfaces at all temperatures and pressures relevant for catalytic applications, even in extremely reducing chemical environments. This suggests that supported Cu nanoparticles do not nucleate at surface O vacancies of the oxide, at variance with many other metal/ceria systems. In oxidizing conditions, the solid solutions are shown to be more stable than the supported systems. Substitutional Cu ions form characteristic CuO(4) units. These promote an easy and reversible O release without the reduction of Ce ions. The study of the extended CeO(2)(111)/Cu(111) interface predicts the full reduction of the interfacial ceria trilayer. Cu nanoparticles supported by ceria are proposed to lie above a subsurface layer of Ce(3+) ions that extends up to the perimeter of the metal-oxide interface. (c) 2010 American Institute of Physics. [doi:10.1063/1.3515424

    Sodium-Ion Intercalation Mechanism in MXene Nanosheets

    No full text
    MXene, a family of layered compounds consisting of nanosheets, is emerging as an electrode material for various electrochemical energy storage devices including supercapacitors, lithium-ion batteries, and sodium-ion batteries. However, the mechanism of its electrochemical reaction is not yet fully understood. Herein, using solid-state <sup>23</sup>Na magic angle spinning NMR and density functional theory calculation, we reveal that MXene Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> in a nonaqueous Na<sup>+</sup> electrolyte exhibits reversible Na<sup>+</sup> intercalation/deintercalation into the interlayer space. Detailed analyses demonstrate that Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> undergoes expansion of the interlayer distance during the first sodiation, whereby desolvated Na<sup>+</sup> is intercalated/deintercalated reversibly. The interlayer distance is maintained during the whole sodiation/desodiation process due to the pillaring effect of trapped Na<sup>+</sup> and the swelling effect of penetrated solvent molecules between the Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> sheets. Since Na<sup>+</sup> intercalation/deintercalation during the electrochemical reaction is not accompanied by any substantial structural change, Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> shows good capacity retention over 100 cycles as well as excellent rate capability

    Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation

    No full text
    Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs
    corecore