4,274 research outputs found

    Nanoparticles in polymer-matrix composites

    Get PDF

    Medical Diagnostic Ultrasound

    Get PDF
    As early as 250 BCE, captains of ancient Greek ships would drop lead weights overboard to provide an estimate of water depth. They would count until those “sounders” produced an audible thud and in that way measure the propagation time of the falling weight. Even though the practice has given way to other technologies for sounding, one still hears the phrase “to sound something out.” In the 17th century, Isaac Newton became fascinated with sound propagation and was one of the first to describe relationships between the speed of sound and measurable properties of the propagation medium, such as density and pressure. Section 8 of Book 2 of the Principia, for example, is devoted to “the motion propagated through fluids” and includes the proposition that the sound speed is given by the square root of the ratio of the “elastic force” to the density of the medium

    A comparison of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of quantum chemistry

    Get PDF
    The ability to perform classically intractable electronic structure calculations is often cited as one of the principal applications of quantum computing. A great deal of theoretical algorithmic development has been performed in support of this goal. Most techniques require a scheme for mapping electronic states and operations to states of and operations upon qubits. The two most commonly used techniques for this are the Jordan-Wigner transformation and the Bravyi-Kitaev transformation. However, comparisons of these schemes have previously been limited to individual small molecules. In this paper we discuss resource implications for the use of the Bravyi-Kitaev mapping scheme, specifically with regard to the number of quantum gates required for simulation. We consider both small systems which may be simulatable on near-future quantum devices, and systems sufficiently large for classical simulation to be intractable. We use 86 molecular systems to demonstrate that the use of the Bravyi-Kitaev transformation is typically at least approximately as efficient as the canonical Jordan-Wigner transformation, and results in substantially reduced gate count estimates when performing limited circuit optimisations.Comment: 46 pages, 11 figure

    Quantized Nambu-Poisson Manifolds and n-Lie Algebras

    Full text link
    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras, as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of R^n by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.Comment: 43 pages, minor corrections, presentation improved, references adde

    Medical diagnostic ultrasound

    Full text link
    corecore