7,198 research outputs found

    Hooke's law correlation in two-electron systems

    Full text link
    We study the properties of the Hooke's law correlation energy (\Ec), defined as the correlation energy when two electrons interact {\em via} a harmonic potential in a DD-dimensional space. More precisely, we investigate the 1S^1S ground state properties of two model systems: the Moshinsky atom (in which the electrons move in a quadratic potential) and the spherium model (in which they move on the surface of a sphere). A comparison with their Coulombic counterparts is made, which highlights the main differences of the \Ec in both the weakly and strongly correlated limits. Moreover, we show that the Schr\"odinger equation of the spherium model is exactly solvable for two values of the dimension (D=1and3D = 1 \text{and} 3), and that the exact wave function is based on Mathieu functions.Comment: 7 pages, 5 figure

    The Bravyi-Kitaev transformation for quantum computation of electronic structure

    Get PDF
    Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [S. B. Bravyi, A.Yu. Kitaev, Annals of Physics 298, 210-226 (2002)], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time-step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure

    Exchange effects on electron scattering through a quantum dot embedded in a two-dimensional semiconductor structure

    Full text link
    We have developed a theoretical method to study scattering processes of an incident electron through an N-electron quantum dot (QD) embedded in a two-dimensional (2D) semiconductor. The generalized Lippmann-Schwinger equations including the electron-electron exchange interaction in this system are solved for the continuum electron by using the method of continued fractions (MCF) combined with 2D partial-wave expansion technique. The method is applied to a one-electron QD case. Cross-sections are obtained for both the singlet and triplet couplings between the incident electron and the QD electron during the scattering. The total elastic cross-sections as well as the spin-flip scattering cross-sections resulting from the exchange potential are presented. Furthermore, inelastic scattering processes are also studied using a multichannel formalism of the MCF.Comment: 11 pages, 4 figure

    A comparison of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of quantum chemistry

    Get PDF
    The ability to perform classically intractable electronic structure calculations is often cited as one of the principal applications of quantum computing. A great deal of theoretical algorithmic development has been performed in support of this goal. Most techniques require a scheme for mapping electronic states and operations to states of and operations upon qubits. The two most commonly used techniques for this are the Jordan-Wigner transformation and the Bravyi-Kitaev transformation. However, comparisons of these schemes have previously been limited to individual small molecules. In this paper we discuss resource implications for the use of the Bravyi-Kitaev mapping scheme, specifically with regard to the number of quantum gates required for simulation. We consider both small systems which may be simulatable on near-future quantum devices, and systems sufficiently large for classical simulation to be intractable. We use 86 molecular systems to demonstrate that the use of the Bravyi-Kitaev transformation is typically at least approximately as efficient as the canonical Jordan-Wigner transformation, and results in substantially reduced gate count estimates when performing limited circuit optimisations.Comment: 46 pages, 11 figure

    Quantized Nambu-Poisson Manifolds and n-Lie Algebras

    Full text link
    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras, as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of R^n by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.Comment: 43 pages, minor corrections, presentation improved, references adde

    Mechanics of the Ski-Snow Contact

    Get PDF
    Two outstanding questions of the ski-snow friction are considered: the deformation mode of the snow and the real contact area. The deformation of hard, well sintered snow in a short time impact has been measured with a special linear friction tester. Four types of deformations have been identified: brittle fracture of bonds, plastic deformation of ice at the contact spots, elastic and delayed elastic deformation of the snow matrix. The latter is the dominant deformation in the ski-snow contact. Based on the measured loading curves the mechanical energy dissipation of snow deformation in skiing on hard snow has been determined and found negligible compared to the thermal energy dissipation. A mechanical model consisting of ice spheres supported by rheological elements (a non-linear spring in series with a Kelvin element) is proposed to model the deformation of snow in the ski-snow contact. The model can describe the delayed elastic behaviour of snow. Coupled with the complete topographical description of the snow surface obtained from X-ray micro computer tomography measurements, the model predicts the number and area of contact spots between ski and snow. An average contact spot size of 110μm, and a relative real contact area of 0.4% has been foun

    Ground-state densities and pair correlation functions in parabolic quantum dots

    Full text link
    We present an extensive comparative study of ground-state densities and pair distribution functions for electrons confined in two-dimensional parabolic quantum dots over a broad range of coupling strength and electron number. We first use spin-density-functional theory to determine spin densities that are compared with Diffusion Monte Carlo (DMC) data. This accurate knowledge of one-body properties is then used to construct and test a local approximation for the electron-pair correlations. We find very satisfactory agreement between this local scheme and the available DMC data, and provide a detailed picture of two-body correlations in a coupling-strength regime preceding the formation of Wigner-like electron ordering.Comment: 18 pages, 12 figures, submitte

    Model ab initio study of charge carrier solvation and large polaron formation on conjugated carbon chains

    Full text link
    Using long C_{N}H_{2} conjugated carbon chains with the polyynic structure as prototypical examples of one-dimensional (1D) semiconductors, we discuss self-localization of excess charge carriers into 1D large polarons in the presence of the interaction with a surrounding polar solvent. The solvation mechanism of self-trapping is different from the polaron formation due to coupling with bond-length modulations of the underlying atomic lattice well-known in conjugated polymers. Model ab initio computations employing the hybrid B3LYP density functional in conjunction with the polarizable continuum model are carried out demonstrating the formation of both electron- and hole-polarons. Polarons can emerge entirely due to solvation but even larger degrees of charge localization occur when accompanied by atomic displacements
    • …
    corecore