8 research outputs found

    One-dimensional quantum chaos: Explicitly solvable cases

    Get PDF
    We present quantum graphs with remarkably regular spectral characteristics. We call them {\it regular quantum graphs}. Although regular quantum graphs are strongly chaotic in the classical limit, their quantum spectra are explicitly solvable in terms of periodic orbits. We present analytical solutions for the spectrum of regular quantum graphs in the form of explicit and exact periodic orbit expansions for each individual energy level.Comment: 9 pages and 4 figure

    Combinatorial identities for binary necklaces from exact ray-splitting trace formulae

    Full text link
    Based on an exact trace formula for a one-dimensional ray-splitting system, we derive novel combinatorial identities for cyclic binary sequences (P\'olya necklaces).Comment: 15 page

    Explicitly solvable cases of one-dimensional quantum chaos

    Get PDF
    We identify a set of quantum graphs with unique and precisely defined spectral properties called {\it regular quantum graphs}. Although chaotic in their classical limit with positive topological entropy, regular quantum graphs are explicitly solvable. The proof is constructive: we present exact periodic orbit expansions for individual energy levels, thus obtaining an analytical solution for the spectrum of regular quantum graphs that is complete, explicit and exact

    Experimental and Numerical Studies of One-Dimensional and Three-Dimensional Chaotic Open Systems

    No full text
    We present the results of experimental studies of microwave irregular networks and a three-dimensional microwave rough cavity in the presence of absorption. Microwave networks are also analyzed numerically. Microwave networks simulate one-dimensional quantum graphs. The networks consist of coaxial cables connected by joints and attenuators to control absorption. Three-dimensional microwave rough cavities have no formal analog in quantum 3D systems. However, some statistical properties of their spectra such as the level spacing distribution confirms that they belong to the wave-chaotic systems. Absorption of the cavity was changed by using a foam microwave absorber

    Yeasts in Pucciniomycotina

    No full text

    Krebs durch chemische Stoffe

    No full text
    corecore