143 research outputs found

    Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses

    Get PDF
    Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens

    Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model

    Get PDF
    The paper analyzes the imaging properties of the light sword optical element (LSOE) applied as a contact lens to the presbyopic human eye. We performed our studies with a human eye model based on the Gullstrand parameterization. In order to quantify the discussion concerning imaging with extended depth of focus, we introduced quantitative parameters characterizing output images of optotypes obtained in numerical simulations. The quality of the images formed by the LSOE were compared with those created by a presbyopic human eye, reading glasses and a quartic inverse axicon. Then we complemented the numerical results by an experiment where a 3D scene was imaged by means of the refractive LSOE correcting an artificial eye based on the Gullstrand model. According to performed simulations and experiments the LSOE exhibits abilities for presbyopia correction in a wide range of functional vision distances.This work was supported by the Polish Ministry of Science and Higher Education under grant N N 514 149038 and by the Spanish Ministerio de Ciencia e Innovación (MICINN), grant FIS2008-03884 with complementary support from the European Social Fund implemented under the Human Capital Programme (POKL), project, “Preparation and Realization of Medical Physics Specialty.”S

    Strehl ratios characterizing optical elements designed for presbyopia compensation

    Get PDF
    We present results of numerical analysis of the Strehl ratio characteristics for the light sword optical element (LSOE). For comparison there were analyzed other optical imaging elements proposed for compensation of presbyopia such as the bifocal lens, the trifocal lens, the stenopeic contact lens, and elements with extended depth of focus (EDOF), such as the logarithmic and quartic axicons. The simulations were based on a human eye’s model being a simplified version of the Gullstrand model. The results obtained allow to state that the LSOE exhibits much more uniform characteristics of the Strehl ratio comparing with other known hitherto elements and therefore it could be a promising aid to compensate for the insufficient accommodation range of the human eye.This work was supported by the Polish Ministry of Science and Higher Education under grants N N 514 149038 and N N 518 378237 as well as by the European Social Fund implemented under the Human Capital Operational Programme (POKL), project: “Preparation and Realization of Medical Physics Specialty” with complementary support from the Spanish Ministerio de Ciencia e Innovación (MICINN) grant FIS2008-03884S

    Contrast transfer characteristics of the light sword optical element designed for presbyopia compensation

    Get PDF
    The paper discusses the abilities of the light sword optical element (LSOE) for presbyopia compensation. The imaging properties are analyzed by means of the modulation transfer functions and output images of the star resolution test. All numerical calculations are performed assuming an optical set-up simulating the presbyopic human eye and based on the Gullstrand model. In order to have a meaningful comparison we expand our study and present adequate analysis for other elements potentially useful in ophthalmology as reading glasses, bifocal lenses and axicons. According to the obtained results the LSOE can successfully realize vision with an extended depth of field. The element makes possible the compensation of an assumed defocus up to 4 dioptres. The output images formed by the LSOE are well recognizable and have acceptable qualities for near as well as far object distances

    A new type of superelastic and shape memory materials: ThCr2Si2- structured novel intermetallic compounds at small length scales

    Get PDF
    Crystalline, superelastic materials typically exhibit large recoverable strains due to the ability of the material to undergo a reversible phase transition between martensite and austenite phases. Applicable to various alloys, ceramics and intermetallic compounds, this reversible transition serves as a general mechanism for superelasticity and shape memory effect. Recently, we noticed that ThCr2Si2-structured intermetallic compounds exhibit a reversible phase transition between a tetragonal (or orthorhombic) phase to a collapsed tetragonal phase under compression along c-axis of the unit cell by making and breaking Si-Si type bonds. This process has nothing to do with martensitic transformation. This unique reversible phase transformation process motivated us to investigate their potential as a superelastic and shape memory material. Please click Additional Files below to see the full abstract
    corecore