9 research outputs found

    Biodegradation of weathered crude oil by microbial communities in solid and melted sea ice.

    Get PDF
    Abstract Oil spilled in the Arctic may drift into ice-covered areas and become trapped until the ice melts. To determine if exposure to oil during freezing may have a priming effect on degradation of the oil, weathered dispersed oil (2-3 mg/L) was frozen into solid ice for 200 days at -10 °C, then melted and incubated for 64 days at 4 °C. No degradation was measured in oil frozen into ice prior to melting. Both total amount of oil and target compounds were biotransformed by the microbial community from the melted ice. However, oil released from melted ice was degraded at a slower rate than oil incubated in fresh seawater at the same temperature (4 °C), and by a different microbial community. These data suggest negligible biodegradation of oil frozen in sea ice, while oil-degrading bacteria surviving in the ice may contribute to biodegradation when the ice melts

    Biodegradation in seawater of PAH and alkylphenols from produced water of a North Sea Platform

    Get PDF
    Operational planned discharges of produced water (PW) to the marine environment from offshore oil production installations, contain low concentrations of dispersed oil compounds, like polycyclic aromatic hydrocarbons (PAH) and alkylated phenols (APs). Biotransformation in natural seawater (SW) of naphthalene/PAH and phenol/AP in field-collected PW from a North Sea platform was investigated in this biodegradation study. The PW was diluted in SW from a Norwegian fjord, and the biodegradation study was performed in slowly rotating carousels at environmental conditions (13⁰C) over a period of 62 days. Naphthalene/PAH and phenol/AP biotransformation was determined by first-order rate kinetics, after normalization against the recalcitrant biomarker 17ι(H),21β(H)-Hopane. The results from this study showed total biotransformation half-lives ranging from 10 to 19 days for groups of naphthalenes and PAH, while half-lives for APs (C0- to C9-alkylated) were 10 to 14 days. Biotransformation half-lives of single components ranged from 8 to >100 days for naphthalenes and PAHs (median 16 days), and from 6 to 72 days (median 15 days) for phenols and AP. Four of the tested PAHs (chrysene, benzo(b)fluoranthene, benzo(e)pyrene, benzo(g,h,i,)perylene) and one AP (4-tert-butylphenol) showed biotransformation half-lives >50 days. This is one of a few studies that has investigated the potential for biodegradation of PW in natural SW. Methods and data from this study may be used as a part of Risk Based Approaches (RBA) for assessments of environmental fate of PW released to the marine environment and as part of the persistence related to risk.acceptedVersio

    Modelling biodegradation of crude oil components at low temperatures

    Get PDF
    For oil spilled at sea, the main weathering processes are evaporation, emulsification, photo-oxidation, dispersion and biodegradation. Of these, only biodegradation may completely remove hydrocarbons from the environment in the long term, as the other processes only serve to transform and dilute the oil components. As petroleum development is moving north, the probability of Arctic oil spills increases. Hence, it is imperative to develop methods for comprehensive risk assessment of oil spills in cold and ice-covered waters. Accurate biodegradation rates are an essential part of this, as they are required to predict the long-term effects of marine oil spills. In this paper, we present experimentally determined biodegradation rates for the component groups which are used to represent oil in the OSCAR oil spill model. The experiments have been carried out at seawater temperatures of , , , and . We show that for the lighter and more soluble oil components, the changes in degradation rates between and are well captured by a constant scaling law. At lower temperatures, and for heavier and less soluble components, the rates are not well described by a constant , probably indicating that oil properties become important for the biodegradation rate.publishedVersio

    Biodegradation of weathered crude oil in seawater with frazil ice

    Get PDF
    As ice extent in the Arctic is declining, oil and gas activities will increase, with higher risk of oil spills to the marine environment. To determine biotransformation of dispersed weathered oil in newly formed ice, oil dispersions (2–3 ppm) were incubated in a mixture of natural seawater and frazil ice for 125 days at −2 °C. Dispersed oil in seawater without frazil ice were included in the experimental setup. Presence or absence of frazil ice was a strong driver for microbial community structures and affected the rate of oil degradation. n-alkanes were degraded faster in the presence of frazil ice, the opposite was the case for naphthalenes and 2–3 ring PAHs. No degradation of 4–6 ring PAHs was observed in any of the treatments. The total petroleum oil was not degraded to any significant degree, suggesting that oil will freeze into the ice matrix and persist throughout the icy season

    Biodegradation of weathered crude oil in seawater with frazil ice

    Get PDF
    As ice extent in the Arctic is declining, oil and gas activities will increase, with higher risk of oil spills to the marine environment. To determine biotransformation of dispersed weathered oil in newly formed ice, oil dispersions (2–3 ppm) were incubated in a mixture of natural seawater and frazil ice for 125 days at −2 °C. Dispersed oil in seawater without frazil ice were included in the experimental setup. Presence or absence of frazil ice was a strong driver for microbial community structures and affected the rate of oil degradation. n-alkanes were degraded faster in the presence of frazil ice, the opposite was the case for naphthalenes and 2–3 ring PAHs. No degradation of 4–6 ring PAHs was observed in any of the treatments. The total petroleum oil was not degraded to any significant degree, suggesting that oil will freeze into the ice matrix and persist throughout the icy season.publishedVersio

    Modelling biodegradation of crude oil components at low temperatures

    No full text
    For oil spilled at sea, the main weathering processes are evaporation, emulsification, photo-oxidation, dispersion and biodegradation. Of these, only biodegradation may completely remove hydrocarbons from the environment in the long term, as the other processes only serve to transform and dilute the oil components. As petroleum development is moving north, the probability of Arctic oil spills increases. Hence, it is imperative to develop methods for comprehensive risk assessment of oil spills in cold and ice-covered waters. Accurate biodegradation rates are an essential part of this, as they are required to predict the long-term effects of marine oil spills. In this paper, we present experimentally determined biodegradation rates for the component groups which are used to represent oil in the OSCAR oil spill model. The experiments have been carried out at seawater temperatures of , , , and . We show that for the lighter and more soluble oil components, the changes in degradation rates between and are well captured by a constant scaling law. At lower temperatures, and for heavier and less soluble components, the rates are not well described by a constant , probably indicating that oil properties become important for the biodegradation rate

    Modelling biodegradation of crude oil components at low temperatures

    No full text
    For oil spilled at sea, the main weathering processes are evaporation, emulsification, photo-oxidation, dispersion and biodegradation. Of these, only biodegradation may completely remove hydrocarbons from the environment in the long term, as the other processes only serve to transform and dilute the oil components. As petroleum development is moving north, the probability of Arctic oil spills increases. Hence, it is imperative to develop methods for comprehensive risk assessment of oil spills in cold and ice-covered waters. Accurate biodegradation rates are an essential part of this, as they are required to predict the long-term effects of marine oil spills. In this paper, we present experimentally determined biodegradation rates for the component groups which are used to represent oil in the OSCAR oil spill model. The experiments have been carried out at seawater temperatures of , , , and . We show that for the lighter and more soluble oil components, the changes in degradation rates between and are well captured by a constant scaling law. At lower temperatures, and for heavier and less soluble components, the rates are not well described by a constant , probably indicating that oil properties become important for the biodegradation rate

    Biodegradation of weathered crude oil in seawater with frazil ice

    No full text
    As ice extent in the Arctic is declining, oil and gas activities will increase, with higher risk of oil spills to the marine environment. To determine biotransformation of dispersed weathered oil in newly formed ice, oil dispersions (2–3 ppm) were incubated in a mixture of natural seawater and frazil ice for 125 days at −2 °C. Dispersed oil in seawater without frazil ice were included in the experimental setup. Presence or absence of frazil ice was a strong driver for microbial community structures and affected the rate of oil degradation. n-alkanes were degraded faster in the presence of frazil ice, the opposite was the case for naphthalenes and 2–3 ring PAHs. No degradation of 4–6 ring PAHs was observed in any of the treatments. The total petroleum oil was not degraded to any significant degree, suggesting that oil will freeze into the ice matrix and persist throughout the icy season
    corecore