103 research outputs found

    Improvements in the CHERS system for DT experiments on TFTR

    Get PDF
    Improvements in the charge exchange recombination spectroscopy (CHERS) system have resulted in accurate measurements of T{sub i} and V{sub {phi}} profiles during DT experiments. These include moving the spectrometer detector array and electronics farther away from the tokamak to a low neutron flux location. This relocation has also improved access to all components of the system. Also, a nonplasma-viewing calibration fiber system was added to monitor the change in fiber transmission due to the high flux DT neutrons. Narrowband filtered light transmitted through the calibration fiber is now used as a reference for the VO measurement. At the highest neutron flux of {approximately} 2.5 {times} 10{sup 18} neutrons/see (fusion power {approximately} 6.2 MW) a modest 5% decrease in fiber transmission was observed. Corrections for transmission loss are made and T{sub i} (r,t) and absolute V{sub phi} (r,t) profiles are automatically calculated within four minutes of every shot

    Effect of plasma shaping on performance in the National Spherical Torus Experiment

    Full text link
    The National Spherical Torus Experiment (NSTX) has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic (MHD) modes (e.g., ideal external kinks and resistive wall modes), edge localized modes (ELMs), bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving Βt ∼40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation κ∼2.8 and triangularity δ∼0.8. Ideal MHD theory predicts increased stability at high values of shaping factor S≡ q95 Ip (a Bt), which has been observed at large values of the S∼37 [MA (m·T)] on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed Ip. The achievement of strong shaping has enabled operation with 1 s pulses with Ip =1 MA, and for 1.6 s for Ip =700 kA. Analysis of the noninductive current fraction as well as empirical analysis of the achievable plasma pulse length as elongation is varied will be presented. Data are presented showing a reduction in peak divertor heat load due to increasing in flux expansion. © 2006 American Institute of Physics

    Experimental Tests Of Paleoclassical Transport

    Get PDF
    Predictions of the recently developed paleoclassical transport model are compared with data from many toroidal plasma experiments: electron heat diffusivity in DIII-D, C-Mod and NSTX ohmic and near-ohmic plasmas; transport modeling of DIII-D ohmic-level discharges and of the RTP ECH 'stair-step' experiments with eITBs at low order rational surfaces; investigation of a strong eITB in JT-60U; H-mode Te edge pedestal properties in DIII-D; and electron heat diffusivities in non-tokamak experiments (NSTX/ST, MST/RFP, SSPX/spheromak). The radial electron heat transport predicted by the paleoclassical model is found to agree with a wide variety of ohmic-level experimental results and to set the lower limit (within a factor {approx} 2) for the radial electron heat transport in most resistive, current-carrying toroidal plasmas -- unless it is exceeded by fluctuation-induced transport, which often occurs in the edge of L-mode plasmas and when the electron temperature is high ({approx}>T{sub e}{sup crit} {approx}B{sup 2/3}{bar {alpha}}{sup 1/2} keV) because then paleoclassical transport becomes less than gyro-Bohm-level anomalous transport

    Status and Plans for the National Spherical Torus Experimental Research Facility

    Full text link
    • …
    corecore