72 research outputs found

    Peripheral Routes to Neurodegeneration : Passing Through the Blood–Brain Barrier

    Get PDF
    A bidirectional crosstalk between peripheral players of immunity and the central nervous system (CNS) exists. Hence, blood–brain barrier (BBB) breakdown is emerging as a participant mechanism of dysregulated peripheral–CNS interplay, promoting diseases. Here, we examine the implication of BBB damage in neurodegeneration, linking it to peripheral brain-directed autoantibodies and gut–brain axis mechanisms. As BBB breakdown is a factor contributing to, or even anticipating, neuronal dysfunction(s), we here identify contemporary pharmacological strategies that could be exploited to repair the BBB in disease conditions. Developing neurovascular, add on, therapeutic strategies may lead to a more efficacious pre-clinical to clinical transition with the goal of curbing the progression of neurodegeneration.Peer reviewe

    Cloning, expression and pharmacology of the mouse 5-HT4L receptor

    Get PDF
    AbstractSince most of our knowledge on pharmacological properties of brain 5-HT4 receptors have been discussed for mouse colliculi neurons, we cloned the corresponding receptor using the RT-PCR approach. As expected, the homology with the already cloned rat 5-HT4L receptor was high, revealing only 16 differences at the amino-acid level. One of the differences, proline75 in mouse, alanine75 in the already published rat sequences was not confirmed. Therefore this proline is part of the consensus sequence present in all 5-HT receptor transmembrane domain II (LVMP). Comparing the affinities of 11 agonists and five antagonists for the cloned mouse receptor (5-HT4L) expressed in LLCPK1 and the corresponding receptor in mouse colliculi shows an excellent correlation. The transfected mouse 5-HT4L receptor stimulated cAMP production. When expressed at high density, it exhibited intrinsic activity. In contrast to the previously described distribution, we found that mRNA encoding for both the short (5-HT4S) and the long form (5-HT4L) of 5-HT4 receptors are expressed in all mouse and rat brain areas

    Modifying Ligand-Induced and Constitutive Signaling of the Human 5-HT4 Receptor

    Get PDF
    G protein–coupled receptors (GPCRs) signal through a limited number of G-protein pathways and play crucial roles in many biological processes. Studies of their in vivo functions have been hampered by the molecular and functional diversity of GPCRs and the paucity of ligands with specific signaling effects. To better compare the effects of activating different G-protein signaling pathways through ligand-induced or constitutive signaling, we developed a new series of RASSLs (receptors activated solely by synthetic ligands) that activate different G-protein signaling pathways. These RASSLs are based on the human 5-HT4b receptor, a GPCR with high constitutive Gs signaling and strong ligand-induced G-protein activation of the Gs and Gs/q pathways. The first receptor in this series, 5-HT4-D100A or Rs1 (RASSL serotonin 1), is not activated by its endogenous agonist, serotonin, but is selectively activated by the small synthetic molecules GR113808, GR125487, and RO110-0235. All agonists potently induced Gs signaling, but only a few (e.g., zacopride) also induced signaling via the Gq pathway. Zacopride-induced Gq signaling was enhanced by replacing the C-terminus of Rs1 with the C-terminus of the human 5-HT2C receptor. Additional point mutations (D66A and D66N) blocked constitutive Gs signaling and lowered ligand-induced Gq signaling. Replacing the third intracellular loop of Rs1 with that of human 5-HT1A conferred ligand-mediated Gi signaling. This Gi-coupled RASSL, Rs1.3, exhibited no measurable signaling to the Gs or Gq pathway. These findings show that the signaling repertoire of Rs1 can be expanded and controlled by receptor engineering and drug selection

    Engineering GPCR signaling pathways with RASSLs

    Get PDF
    We are creating families of designer G-protein-coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (Gs, Gi, Gq). These new advances are reviewed here to help facilitate the use of these powerful and diverse tools

    Primary culture of mouse dopaminergic neurons

    No full text
    International audienceDopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment

    Serotonin: a new hope in Alzheimer's disease?

    No full text
    International audienceAlzheimer's disease (AD) is the most common form of dementia affecting 35 million individuals worldwide. Current AD treatments provide only brief symptomatic relief. It is therefore urgent to replace this symptomatic approach with a curative one. Increasing serotonin signaling as well as developing molecules that enhance serotonin concentration in the synaptic cleft have been debated as possible therapeutic strategies to slow the progression of AD. In this Viewpoint, we discuss exciting new insights regarding the modulation of serotonin signaling for AD prevention and therapy

    G Protein-Coupled Receptors: Dominant Players in Cell-Cell Communication

    No full text
    International audienceThe G protein-coupled receptors (GPCRs) are the most numerous and the most diverse type of receptors (1–5% of the complete invertebrate and vertebrate genomes). They transduce messages as different as odorants, nucleotides, nucleosides, peptides, lipids, and proteins. There are at least eight families of GPCRs that show no sequence similarities and that use different domains to bind ligands and activate a similar set of G proteins. Homo- and heterodimerization of GPCRs seem to be the rule, and in some cases an absolute requirement, for activation. There are about 100 orphan GPCRs in the human genome which will be used to find new message molecules. Mutations of GPCRs are responsible for a wide range of genetic diseases. The importance of GPCRs in physiological processes is illustrated by the fact that they are the target of the majority of therapeutical drugs and drugs of abuse

    Primary Culture of Mouse Dopaminergic Neurons

    No full text
    • …
    corecore