6 research outputs found

    Humoral Response to the Anopheles gambiae Salivary Protein gSG6: A Serological Indicator of Exposure to Afrotropical Malaria Vectors

    Get PDF
    Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and progressive desensitization to insect salivary allergens

    Self-Reactivities to the Non-Erythroid Alpha Spectrin Correlate with Cerebral Malaria in Gabonese Children

    Get PDF
    BACKGROUND: Hypergammaglobulinemia and polyclonal B-cell activation commonly occur in Plasmodium sp. infections. Some of the antibodies produced recognize self-components and are correlated with disease severity in P. falciparum malaria. However, it is not known whether some self-reactive antibodies produced during P. falciparum infection contribute to the events leading to cerebral malaria (CM). We show here a correlation between self-antibody responses to a human brain protein and high levels of circulating TNF alpha (TNFα), with the manifestation of CM in Gabonese children. METHODOLOGY: To study the role of self-reactive antibodies associated to the development of P. falciparum cerebral malaria, we used a combination of quantitative immunoblotting and multivariate analysis to analyse correlation between the reactivity of circulating IgG with a human brain protein extract and TNFα concentrations in cohorts of uninfected controls (UI) and P. falciparum-infected Gabonese children developing uncomplicated malaria (UM), severe non-cerebral malaria (SNCM), or CM. RESULTS/CONCLUSION: The repertoire of brain antigens recognized by plasma IgGs was more diverse in infected than in UI individuals. Anti-brain reactivity was significantly higher in the CM group than in the UM and SNCM groups. IgG self-reactivity to brain antigens was also correlated with plasma IgG levels and age. We found that 90% of CM patients displayed reactivity to a high-molecular mass band containing the spectrin non-erythroid alpha chain. Reactivity with this band was correlated with high TNFα concentrations in CM patients. These results strongly suggest that an antibody response to brain antigens induced by P. falciparum infection may be associated with pathogenic mechanisms in patients developing CM

    Drying kinetics of ‘babassu’ mesocarp

    No full text
    ABSTRACT ‘Babassu’ mesocarp flour has been used by the pharmaceutical, human food and animal feed industries. However, there is lack of standardization in the production, as well as absence of information on the management of the product’s quality. Thus, the objective of this study was to dry the ‘babassu’ mesocarp in forced-air oven and solar dryer, adjust different mathematical models to the experimental data, as well as to quantify the levels of proteins and crude fiber of the produced flour. The criteria for the adjustment were the coefficient of determination, magnitude of the mean relative error, standard deviation of estimate and the residual distribution trend. Drying in the shortest time occurred in oven at 60 °C (370 min), leading to water content of 4.62%, while in the solar dryer the final water content was 8.07% in 6 days. The mathematical model Two Terms showed the best fit to the experimental data for oven drying and the Midilli model showed the best fit in solar dryer. There was an increase in protein content with the drying in solar dryer and oven at 40, 50 and 60 °C (1.36, 1.33, 1.15 and 1.37%, respectively) in relation to fresh mesocarp (0.88%). Drying in both oven and solar dryer promoted increase of protein in the flour

    Drying kinetics of ‘babassu’ mesocarp

    No full text
    <div><p>ABSTRACT ‘Babassu’ mesocarp flour has been used by the pharmaceutical, human food and animal feed industries. However, there is lack of standardization in the production, as well as absence of information on the management of the product’s quality. Thus, the objective of this study was to dry the ‘babassu’ mesocarp in forced-air oven and solar dryer, adjust different mathematical models to the experimental data, as well as to quantify the levels of proteins and crude fiber of the produced flour. The criteria for the adjustment were the coefficient of determination, magnitude of the mean relative error, standard deviation of estimate and the residual distribution trend. Drying in the shortest time occurred in oven at 60 °C (370 min), leading to water content of 4.62%, while in the solar dryer the final water content was 8.07% in 6 days. The mathematical model Two Terms showed the best fit to the experimental data for oven drying and the Midilli model showed the best fit in solar dryer. There was an increase in protein content with the drying in solar dryer and oven at 40, 50 and 60 °C (1.36, 1.33, 1.15 and 1.37%, respectively) in relation to fresh mesocarp (0.88%). Drying in both oven and solar dryer promoted increase of protein in the flour.</p></div

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore