6 research outputs found
The human lactoferrin-derived peptide hLF1-11 primes monocytes for an enhanced TLR-mediated immune response
Earlier we reported that the peptide corresponding to the first eleven N-terminal amino acids of human lactoferrin (hLF1-11) is active against multi-drug resistant pathogens in mice. The mechanisms underlying this anti-infective activity remain unclear. Since hLF1-11 is ineffective against pathogens at physiological salt concentrations and hLF1-11 directs differentiation of monocytes toward a macrophage subset with enhanced effector functions, we investigated the effects of hLF1-11 on human and murine monocytes. Results revealed that human and murine monocytes exposed for 1 h to hLF1-11 and then stimulated with the Toll-like receptor (TLR)-ligand LPS for 18 h, displayed enhanced cytokine and chemokine production as compared to control (peptide-treated) monocytes. We also found that expression of mRNA, cell-surface receptor expression, and NF-ÎşB activation by hLF1-11-exposed human monocytes were enhanced as compared to control (peptide-treated) monocytes. Furthermore, the kinetics of the cytokine production was unchanged as mRNA levels and protein levels paralleled the enhanced response of hLF1-11-exposed monocytes to LPS. The cytokine production by human monocytes in response to TLR4, TLR5, and TLR7 stimulation, but not to TLR2 stimulation, was elevated by hLF1-11. In concordance, translocation of NF-ÎşB subunits to the nucleus was enhanced in hLF1-11-exposed monocytes after TLR stimulation, except for TLR2, as compared to control (peptide-exposed) monocytes. In conclusion, monocytes were primed by hLF1-11 for an enhanced inflammatory response upon TLR4, TLR5, and TLR7 stimulation, but not TLR2 stimulation. Such effects of hLF1-11 on monocyte reactivity should be taken into account when considering the clinical development of this peptide for a therapeutic intervention in patients
Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3)
Objective: Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. Methods: To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. Results: Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. Interpretation: Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269–282
The Antimicrobial Peptide hLF1-11 Drives Monocyte-Dendritic Cell Differentiation toward Dendritic Cells That Promote Antifungal Responses and Enhance Th17 Polarization
The hLF1-11 peptide comprising the first 11 N-terminal residues of human lactoferrin exerts antimicrobial activity in vivo, enhances the inflammatory response of monocytes and directs monocyte-macrophage differentiation toward cells with enhanced antimicrobial properties. In this study, we investigated the effects of hLF1-11 on human monocyte-dendritic cell (DC) differentiation and subsequent T cell activation. Results revealed that - compared to control (peptide-incubated) DCs - hLF1-11-differentiated DCs displayed enhanced expression of HLA class II antigens and dectin-1, and increased phagocytosis of Candida albicans. In addition, hLF1-11-differentiated DCs produced enhanced amounts of reactive oxygen species, IL-6 and IL-10, but not IL-12p40 and TNF-α, upon stimulation with C. albicans. Moreover, 6-day-cultured hLF1-11-differentiated DCs and control (peptide-incubated) DCs that had been stimulated with a Th17-inducing mix of antigens (including C. albicans) for 24 h were cocultured with autologous CD4+ T cells for 72 h and then the levels of IL-10, IL-17 and IFN-γ production and the percentage of cytokine-producing T cells were assessed. The results revealed that the hLF1-11-differentiated DCs induced an enhanced IL-17, but reduced IFN-γ, production by T cells as compared to control (peptide-incubated) DCs. Collectively, the hLF1-11 peptide drives monocyte-DC differentiation toward DCs that promote antifungal responses and enhance Th17 polarization
KBTBD13 is a novel cardiomyopathy gene
KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65Â evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist
KBTBD13 is an actin-binding protein that modulates muscle kinetics
The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology
KBTBD13 is an actin-binding protein that modulates muscle kinetics
International audienceThe mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFPlabeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology