13 research outputs found

    Effects of simulated environmental changes on growth and growth form in a late snowbed population of pohlia wahlenbergii (Web. et Mohr) Andr

    Get PDF
    In a factorial field experiment we increased the temperature (OpenTop Chambers) and nutrients (nitrogen, phosphorus, and potassium[NPK]) to simulate predicted future climate changes and studiedthe growth response of the acrocarpous bryophyte Pohliawahlenbergii (Bryaceae) in a wet snowbed environment. The speciesshows a positive growth-length response to added nutrients andincreased temperature. The stronger response to nutrientsindicates a strong limitation of nutrients in the snowbedenvironment. There was an immediate response to nutrienttreatment, whereas the temperature response was delayed. Thegrowth response shows a clear interaction between temperature andnutrients. The immediate positive growth response is interpretedas a function of the wet habitat, since water makes the addednutrients immediately available to the plants. The growth formchanged toward a more lax (loose) and desiccation-intolerant formwith added nutrients. In a climate change scenario based on theseresults we hypothesize that bryophyte response will depend on thewater availability from precipitation and from meltwater. In adrier environment we predict that bryophytes will become moreconstrained toward areas with a high continuity of meltwater,whereas increased precipitation may compensate for any changes ingrowth form, which would be positive for bryophytes

    Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions.

    Get PDF
    Copyright NRC PressThe five sterile stamens, or staminodes, in Parnassia palustris act both as false and as true nectaries. They attract pollinators with their conspicuous, but non-rewarding tips, and also produce nectar at the base. We removed staminodes experimentally and compared pollinator visitation rate and duration and seed set in flowers with and without staminodes in two different populations. We also examined the relative importance of the staminode size to other plant traits. Finally, we bagged, emasculated, and supplementary cross-pollinated flowers to determine the pollination strategy and whether reproduction was limited by pollen availability. Flowers in both populations were highly dependent on pollinator visitation for maximum seed set. In one population pollinators primarily cross-pollinated flowers, whereas in the other the pollinators facilitated self-pollination. The staminodes caused increased pollinator visitation rate and duration to flowers in both populations. The staminodes increased female reproductive success, but only when pollen availability constrained female reproduction. Simple linear regression indicated a strong selection on staminode size, multiple regression suggested that selection on staminode size was mainly caused by correlation with other traits that affected female fitness. [ABSTRACT FROM AUTHOR

    Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine plants and lichens

    Get PDF
    Accepted version of an article published in the journal: Environmental and Experimental Botany. Published version available on Science Direct: http://dx.doi.org/10.1016/j.envexpbot.2011.04.011Global warming is expected to change plant defence through its influence on plant primary resources. Increased temperature (T) will increase photosynthesis, and thus carbon (C) availability, but may also increase soil mineralization and availability of nitrogen (N). More access to C and N is expected to mainly increase plant growth, and, according to hypotheses on resource based defence, this could lower plant concentrations of carbon-based secondary compounds (CBSCs). We used two already established warming experiment with open top chambers (OTCs) and control plots in alpine south-western Norway, one on a ridge (8 years' treatment) and a one in a leeside (3 years' treatment), to study the effects of warming on plant and lichen defensive compound concentrations. The study included five vascular plant and six lichen species. One vascular plant species had lower concentration of CBSCs under elevated T, while the others did not respond to the treatment. In lichens there were no effects of warming on CBSCs, but a tendency to reduced total C concentrations. However, there were effects of warming on nitrogen, as the concentration decreased inside OTCs for three species, while it increased for one lichen species. Lichens generally had higher CBSC and total C concentrations on the ridge than in the leeside, but no such pattern were seen for vascular plants. No elevated temperature effect on CBCSs is most probably a result of high constitutive defence under the limiting alpine conditions, suggesting that chemical defence is little subject to change under climate warming, at least on a short-term basis. We suggest that the driving forces of plant defence in the arctic-alpine should be tested individually under controlled conditions, and suggest that competition from other plants may be a greater threat under climate warming than increased herbivory or disease attacks

    Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions.

    Get PDF
    The five sterile stamens, or staminodes, in Parnassia palustris act both as false and as true nectaries. They attract pollinators with their conspicuous, but non-rewarding tips, and also produce nectar at the base. We removed staminodes experimentally and compared pollinator visitation rate and duration and seed set in flowers with and without staminodes in two different populations. We also examined the relative importance of the staminode size to other plant traits. Finally, we bagged, emasculated, and supplementary cross-pollinated flowers to determine the pollination strategy and whether reproduction was limited by pollen availability. Flowers in both populations were highly dependent on pollinator visitation for maximum seed set. In one population pollinators primarily cross-pollinated flowers, whereas in the other the pollinators facilitated self-pollination. The staminodes caused increased pollinator visitation rate and duration to flowers in both populations. The staminodes increased female reproductive success, but only when pollen availability constrained female reproduction. Simple linear regression indicated a strong selection on staminode size, multiple regression suggested that selection on staminode size was mainly caused by correlation with other traits that affected female fitness. [ABSTRACT FROM AUTHOR

    Estimation of lichen biomass with emphasis on reindeer winter pastures at Hardangervidda, S Norway

    Get PDF
    Quantification of lichen abundance is important for management of reindeer populations. We measured dry lichen biomass in 876 micro plots (16.5 cm - 16.5 cm) systematically sampled within 219 vegetation plots (2 m - 2 m) from 7 different areas in S Norway. Lichen biomass was quantified as: (a) dry weight in g m-2, (b) lichen height in cm, (c) lichen cover, and (d) lichen volume (lichen height ? lichen cover). Lichen biomass decreased with increasing precipitation and increasing altitude. On local scale, the variation in lichen biomass varied strongly with snow conditions. The grazed parts of Hardangervidda had in general a low average lichen biomass (an average mostly lower than 150 g m-2). Lichen biomass was much higher in area where reindeer migration was interfered by human activity. Lichen height and lichen volume were strongly linearly correlated with dry lichen biomass. These proxy methods may therefore be used to predict lichen biomass, but deviations from exact measurements should be expected

    Estimation of lichen biomass with emphasis on reindeer winter pastures at Hardangervidda, S Norway

    Get PDF
    Quantification of lichen abundance is important for management of reindeer populations. We measured dry lichen biomass in 876 micro plots (16.5 cm × 16.5 cm) systematically sampled within 219 vegetation plots (2 m × 2 m) from 7 different areas in S Norway. Lichen biomass was quantified as: (a) dry weight in g m-2, (b) lichen height in cm, (c) lichen cover, and (d) lichen volume (lichen height × lichen cover). Lichen biomass decreased with increasing precipitation and increasing altitude. On local scale, the variation in lichen biomass varied strongly with snow conditions. The grazed parts of Hardangervidda had in general a low average lichen biomass (an average mostly lower than 150 g m-2). Lichen biomass was much higher in area where reindeer migration was interfered by human activity. Lichen height and lichen volume were strongly linearly correlated with dry lichen biomass. These proxy methods may therefore be used to predict lichen biomass, but deviations from exact measurements should be expected
    corecore