101 research outputs found

    Evaluation of early-generation tropical maize testcrosses for grain-yield potential and weevil (Sitophilus zeamais Motschulsky) resistance

    Get PDF
    Smallholder maize farmers in Africa experience pre- and post-harvest production stresses either individually or in combination at different stages of the crop cycle. The maize weevil is among the major post-harvest storage pests. A strategy to address this problem is to develop and promote high yielding maize germplasm with resistance to multiple stresses. A study was conducted to: 1) assess yield and agronomic performance of testcross hybrids developed from early generation lines; and 2) assess the response of the testcross hybrids to infestation with Sitophilus zeamais. Fifty-eight drought-tolerant testcross hybrids were evaluated for agronomic performance and weevil resistance at four environments in Uganda in 2016. Hybrid G39 (L2/T2) had the best grain yield performance; it significantly out-performed the best check by 11.4% in all environments. Hybrid grain from field trials was subjected to Sitophilus zeamais infestation in a choice and no choice test under laboratory conditions. Hybrids G56 (L49/T2) and G58 (L51/T2) had the least weevil damage and were rated as resistant to Sitophilus zeamais. The numbers of damaged kernels, number of exit holes and ear aspect were positively correlated with the grain weight loss. The results suggest possibilities for simultaneous selection for high grain yield and storage insect pest resistance among drought-tolerant genotypes. Use of high-yielding and resistant maize hybrids to storage insect pest should be promoted for increased maize production and managing post-harvest losses due to the maize weevil in smallholder farming communities in Africa

    Multiomics Longitudinal Modeling of Preeclamptic Pregnancies

    Get PDF
    Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear and that poses a threat to both mothers and infants. Specific complex changes in women\u27s physiology precede a diagnosis of preeclampsia. Understanding multiple aspects of such a complex changes at different levels of biology, can be enabled by simultaneous application of multiple assays. We developed prediction models for preeclampsia risk by analyzing six omics datasets from a longitudinal cohort of pregnant women. A machine learning-based multiomics model had high accuracy (area under the receiver operating characteristics curve (AUC) of 0.94, 95% confidence intervals (CI):[0.90, 0.99]). A prediction model using only ten urine metabolites provided an accuracy of the whole metabolomic dataset and was validated using an independent cohort of 16 women (AUC= 0.87, 95% CI:[0.76, 0.99]). Integration with clinical variables further improved prediction accuracy of the urine metabolome model (AUC= 0.90, 95% CI:[0.80, 0.99], urine metabolome, validated). We identified several biological pathways to be associated with preeclampsia. The findings derived from models were integrated with immune system cytometry data, confirming known physiological alterations associated with preeclampsia and suggesting novel associations between the immune and proteomic dynamics. While further validation in larger populations is necessary, these encouraging results will serve as a basis for a simple, early diagnostic test for preeclampsia

    Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models

    Get PDF
    Tropical forests vary substantially in the densities of trees of different sizes and thus in above-ground biomass and carbon stores. However, these tree size distributions show fundamental similarities suggestive of underlying general principles. The theory of metabolic ecology predicts that tree abundances will scale as the -2 power of diameter. Demographic equilibrium theory explains tree abundances in terms of the scaling of growth and mortality. We use demographic equilibrium theory to derive analytic predictions for tree size distributions corresponding to different growth and mortality functions. We test both sets of predictions using data from 14 large-scale tropical forest plots encompassing censuses of 473 ha and \u3e 2 million trees. The data are uniformly inconsistent with the predictions of metabolic ecology. In most forests, size distributions are much closer to the predictions of demographic equilibrium, and thus, intersite variation in size distributions is explained partly by intersite variation in growth and mortality. © 2006 Blackwell Publishing Ltd/CNRS

    Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests

    Get PDF
    The theory of metabolic ecology predicts specific relationships among tree stem diameter, biomass, height, growth and mortality. As demographic rates are important to estimates of carbon fluxes in forests, this theory might offer important insights into the global carbon budget, and deserves careful assessment. We assembled data from 10 old-growth tropical forests encompassing censuses of 367 ha and > 1.7 million trees to test the theory's predictions. We also developed a set of alternative predictions that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size. Our results show that there are no universal scaling relationships of growth or mortality with size among trees in tropical forests. Observed patterns were consistent with our alternative model in the one site where we had the data necessary to evaluate it, and were inconsistent with the predictions of metabolic ecology in all forests

    Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities

    Get PDF
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16–52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha−1 y−1, 95% confidence intervals [0.07, 0.39] MgC ha−1 y−1), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y−1) compared with the tree community as a whole (+0.15 % y−1); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y−1), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests

    Three principles for the progress of immersive technologies in healthcare training and education

    Get PDF

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF
    corecore