36 research outputs found

    Eutrophication-induced phosphorus limitation in the Mississippi River plume: Evidence from fast repetition rate fluorometry

    Get PDF
    We assessed nutrient limitation in the Mississippi River plurne and Louisiana continental shelf during the summer of 2002 (04-08 July). We measured nutrient concentrations, alkaline phosphatase (AP) activities, chlorophyll a (Chl a) concentrations, and four fast repetition rate fluorescence (FRRF) parameters: the maximum quantum yield of photochemistry in photosystem II (PSII), F-v:F-m; the functional absorption cross section for PSII, sigma(psII); the time for photosynthetic electron transport on the acceptor side of PSII, tau(Qa); and the connectivity factor, p, in 24-h-long nutrient addition bioassays near the Mississippi River delta. Low phosphorus (P) concentrations, elevated inorganic nitrogen-to-phosphorus ratios, high AP activities, and Chl a increases in response to P additions in the bioassays all indicated phosphorus limitation that was confirmed by the response of FRRF parameters. This is the first study to use FRRF to confirm results from basic oceanographic methods to demonstrate phosphorus limitation in a marine setting. F-v:F-m and p responded positively to phosphorus addition, while sigma(psII) and tau(Qa) decreased in the same treatments. When nitrate alone was added, none of the measured parameters differed significantly from the control. We therefore suggest that FRRF can be used to rapidly detect phosphorus limitation in marine ecosystems

    Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center

    No full text
    Microbial processes within deep-sea hydrothermal plumes affect ocean biogeochemistry on global scales. In rising hydrothermal plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in hydrothermal vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different hydrothermal plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic ‘bins' were identified, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the hydrothermal plumes. We conclude that the energy metabolism of microbial communities inhabiting rising hydrothermal plumes is dictated by the underlying plume chemistry, with a dominant role for sulfur-based chemolithoautotrophy

    Carbon Dynamics on the Louisiana Continental Shelf and Cross-Shelf Feeding of Hypoxia

    No full text
    Large-scale hypoxia regularly develops during the summer on the Louisiana continental shelf. Traditionally, hypoxia has been linked to the vast winter and spring nutrient inputs from the Mississippi River and its distributary, the Atchafalaya River. However, recent studies indicate that much of the shelf ecosystem is heterotrophic. We used data from five late July shelfwide cruises from 2006 to 2010 to examine carbon and oxygen production and identify net autotrophic areas of phytoplankton growth on the Louisiana shelf. During these summer times of moderate river flows, shelfwide pH and particulate organic carbon (POC) consistently showed strong signals for net autotrophy in low salinity (<25) waters near the river mouths. There was substantial POC removal via grazing and sedimentation in near-river regions, with 66–85 % of POC lost from surface waters in the low and mid-salinity ranges without producing strong respiration signals in surface waters. This POC removal in nearshore environments indicates highly efficient algal retention by the shelf ecosystem. Updated carbon export calculations for local estuaries and a preliminary shelfwide carbon budget agree with older concepts that offshore hypoxia is linked strongly to nutrient loading from the Mississippi River, but a new emphasis on cross-shelf dynamics emerged in this research. Cross-shelf transects indicated that river-influenced nearshore waters <15 m deep are strong sources of net carbon production, with currents and wave-induced resuspension likely transporting this POC offshore to fuel hypoxia in adjacent mid-shelf bottom waters.Griffith Sciences, Griffith School of EnvironmentNo Full Tex
    corecore