16 research outputs found

    Activation and enzymatic characterization of recombinant human kallikrein 8

    Get PDF
    Human kallikrein 8 (hK8), whose gene was originally cloned as the human ortholog of a mouse brain protease, is known to be associated with diseases such as ovarian cancer and Alzheimer's disease. Recombinant human pro-kallikrein 8 was activated with lysyl endopeptidase-conjugated beads. Amino-terminal sequencing of the activated enzyme demonstrated the cleavage of a 9-aa propeptide from the pro-enzyme. The substrate specificity of activated hK8 was characterized using synthetic fluorescent substrates. hK8 showed trypsin-like specificity, as predicted from sequence analysis and enzymatic characterization of the mouse ortholog. All synthetic substrates tested containing either arginine or lysine at P1 position were cleaved by hK8. The highest k cat/K m value of 20×103M-1 s-1 was observed with Boc-Val-Pro-Arg-7-amido-4-methylcoumarin. The activity of hK8 was inhibited by antipain, chymostatin, and leupeptin. The concentration for 50% inhibition by the best inhibitor, antipain, was 0.46μM. The effect of different metal ions on the enzyme activity was analyzed. Whereas Na+ had no effect on hK8 activity, Ni2+ and Zn2+ decreased the activity and Ca2+, Mg2+, and K+ had a stimulatory effect. Ca2+ was the best activator, with an optimal concentration of approximately 10μ

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Activation and enzymatic characterization of recombinant human kallikrein 8

    Get PDF
    Human kallikrein 8 (hK8), whose gene was originally cloned as the human ortholog of a mouse brain protease, is known to be associated with diseases such as ovarian cancer and Alzheimer's disease. Recombinant human pro-kallikrein 8 was activated with lysyl endopeptidase-conjugated beads. Amino-terminal sequencing of the activated enzyme demonstrated the cleavage of a 9-aa propeptide from the pro-enzyme. The substrate specificity of activated hK8 was characterized using synthetic fluorescent substrates. hK8 showed trypsin-like specificity, as predicted from sequence analysis and enzymatic characterization of the mouse ortholog. All synthetic substrates tested containing either arginine or lysine at P1 position were cleaved by hK8. The highest k cat/K m value of 20×103M-1 s-1 was observed with Boc-Val-Pro-Arg-7-amido-4-methylcoumarin. The activity of hK8 was inhibited by antipain, chymostatin, and leupeptin. The concentration for 50% inhibition by the best inhibitor, antipain, was 0.46μM. The effect of different metal ions on the enzyme activity was analyzed. Whereas Na+ had no effect on hK8 activity, Ni2+ and Zn2+ decreased the activity and Ca2+, Mg2+, and K+ had a stimulatory effect. Ca2+ was the best activator, with an optimal concentration of approximately 10μ

    Correction: Ambient condition-processing strategy for improved air-stability and efficiency in mixed-cation perovskite solar cells (Mater. Adv. (2020) DOI: 10.1039/d0ma00528b)

    Get PDF
    The authors regret that there is an interest that should have been declared that was omitted. The authors wish to declare that a patent application related to some of the content of this article has been filed. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers

    Ambient condition-processing strategy for improved air-stability and efficiency in mixed-cation perovskite solar cells

    Get PDF
    Fabrication of efficient halide perovskite solar cells under ambient conditions and their stability remain a challenge due to the sensitivity of halide perovskites to moisture, oxygen, light, and temperature. Thus, there is a strong demand and interest to develop a method for fabricating perovskite solar cells with long-term stability and even better, such a fabrication method under ambient conditions. To this end, we use a chemical synthesis method and a solvent engineering technique to optimize halide perovskite thin film deposition in an ambient environment. We obtained pinhole-free films composed of large crystal grains and high crystal quality that result in excellent optoelectronic properties of the halide perovskite. We also report a low trap-density in the order of 1015 cm-3 for the polycrystalline perovskite thin film. Moreover, with an n-i-p solar cell structure, a maximum power conversion efficiency of ∼20.3% with excellent stability in ambient air (25-55%RH) for more than ten months of storage (>7000 hours) is achieved. The optimized solar cell without encapsulation retained ∼80% of its initial performance after ten months of storage with a T80 of ∼5035 hours. Our findings suggest that the performance and stability of the perovskite solar cells are highly dependent on the device architecture, grain morphology, trap density, and carrier mobility in the device before and after storage
    corecore