56 research outputs found

    Simulating the long term impact of nitrate mitigation scenarios in apilot study basin

    Get PDF
    The agro-hydrological model TNT2 was used to explore for a period of 14 years (1987–2001) the likelyconsequences of mitigation scenarios on nitrate contamination of the stream water in a small agriculturalcatchment. The Best Management Practices (BMPs) historically designed and implemented in 1992 andtwo devised agricultural scenarios (catch crop (CC) implementation and a global reduction of N fertilizer)are evaluated in term of nitrate contamination in the environment. Two of the BMPs consist in imple-menting natural strips of Poplar and rye-grass strips (5 meters large) along stream and ditches and thethird is a delay in the burial of wheat straws (from August to October). Simulations indicated that naturalstrips implementation would lead to a slight decrease of Nitrate Fluxes (NF) in river by respectively 3.3%and 6.6% for rye-grass and poplar strips: a benefit associated to the non fertilization of strips area. Denitri-fication has not been particularly disrupted in such areas. The delay in the burial of wheat straw in autumndecreases annual mineralization rate and annual plant uptake (by respectively 9 and 13 kg N ha−1y−1)but increases denitrification fluxes by 6 kg N ha−1y−1. This would lead to a slight decrease by 6% of NFin stream (equivalent to 3.3 mg NO3−l−1) and an average decrease of the following sunflower yield by27%. The global reduction of fertilization by 10% would decreased NF in stream by 13.8% (equivalent to8 mg NO3−l−1), with a global decrease by 8 kg N ha−1y−1of plant uptake. The cumulative effect of BMPsand CC would have together lead to a decrease of nitrate concentration from 57.5 to 46.6 mg NO3−l−1reaching the UE environmental quality objectives (below 50 mg NO3−l−1). Spring crops yield followingCC would have been penalized and the decrease of NF is balanced by an increase of denitrification fluxesin the environment contributing to release of N2O, a greenhouse gas, into the atmosphere

    Dynamics of Nitrogen loads in surface water of an agricultural watershed by modelling approach, the Save, Southwest France.

    Get PDF
    Agriculture is known to have a great impact of nutrients enrichment on continental water resources. In south-West of France (Gascogne region), water resource are essentially surface water and shallow aquifer. Nitrogen dynamic in river is complex and highly variable throughout season and year, depending on hydrology, landuse, removal in stream. In this context, agricultural impacts on nitrogen concentration are a matter of concern for agricultural decision-maker. In order to introduce sustainable land use concepts in this hilly, clayey and agricultural shallow soil context, the hydrological simulation model SWAT2005 has been tested as a valuable tool to evaluate the consequences of such land use changes on water and nutrient balance components. This semi-distributed hydrological model coupled with agronomical model EPIC is able to simulate the impact of each agricultural landuse at the outlet of the Save catchment (1100 km2). Hydrological parameters model are calibrated based on 14-year historical record (1994–2008). Nitrogen losses have been measured during 2 years (2006-2008) at the outlet and are used to validate the model calibration. Agricultural data at communal scale coupled with Spot image analyses have been used to evaluate agricultural distribution and pressure in SWAT. The aim of this modelling exercise is to simulate nitrogen cycle in whole agricultural Hydrological Response Units (HRU), depending on plant growth and culture rotation, to simulate accurately nitrate load in river. The ability of SWAT to reproduce nitrogen transfert and transformation at this scale and in this agricultural context will be evaluated by a discussion of importance of each nitrogen cycle process in nitrogen losses. SWAT could be a useful tool to test agricultural scenario to improve the nitrogen management in river

    Long term nitrogen budget modelling in a small agricultural watershed: hydrological control assessment of nitrogen losses with semi-distributed (SWAT) and distributed (TNT2) models

    Get PDF
    Nitrogen exports in catchments are known to be greatly variable because nitrogen cycle in watershed is controlled by different factors such as landuse, farm management practices, climate, soil type and hydrological setting. Our aim is to study the relative importance of the processes controlling nitrogen losses at catchment scale in the long term using a modelling approach constrained by a long term record of observations. The study area is a catchment of 330 ha with 95 % of intensive agriculture in a hilly shallow soil context, in the south west of France. Historical field rotation and nitrogen river load data have been collected for a 20 year period. Two process-based and spatially distributed models have been chosen to simulate nitrogen transfer and transformation in the whole catchment. The first one is the fully distributed TNT2 model, developed and validated in a different context (farming systems in north-western France). The second one is the widely used, semi-distributed SWAT model, used and recognizedto be realistic in many studies on nitrogen transfer in river. This comparative modelling approach was used to evaluate the effect of different modelling approaches on the identification of controlling factors, and the ability of both models to simulate alternative scenarios. The discharge, especially during storm flow, is well simulated by the curve number approach and the semi-distributed hydrological parameter description used SWAT, while the Topmodel-derived approach used in TNT2 tends to underestimate some peak discharges. Nitrogen dynamic simulations are considered to be acceptable for both models for a long time period but the use of both models allows to exhibit their respective capacity and limits. TNT2 has higher potentiality to test the impact of complex agricultural scenarios because the description of management practices and the simulation of crops to management options is more detailed. It permits the assessment of spatial interactions and focussed spatial management, like the set up of grass or tree strips. SWAT can then be used to scale up change scenarios from TNT2 small catchment results to large catchments

    Continuous measurement of nitrate concentration in a highly event-responsive agricultural catchment in south-west of France: is the gain of information useful?

    Get PDF
    A nitrate sensor has been set up to measure every 10 min the nitrate signal in a stream draining a small agricultural catchment dominated by fertilized crops during a 2-year study period (2006–2008) in the south-west of France. An in situ sampling protocol using automatic sampler to monitor flood events have been used to assume a point-to-point calibration of the sensor values. The nitrate concentration exhibits nonsystematic concentration and dilution effects during flood events. We demonstrate that the calibrated nitrate sensor signal gathered from the outlet is considered to be a continuous signal using the Nyquist–Shannon sampling theorem. The objectives of this study are to quantify the errors generated by a typical infrequent sampling protocol and to design appropriate sampling strategy according to the sampling objectives. Nitrate concentration signal and flow data are numerically sampled to simulate common sampling frequencies. The total fluxes calculated from the simulated samples are compared with the reference value computed on the continuous signal. Uncertainties are increasing as sampling intervals increase; the method that is not using continuous discharge to compute nitrate fluxes bring larger uncertainty. The dispersion and bias computed for each sampling interval are used to evaluate the uncertainty during each hydrological period. High underestimation is made during flood periods when high-concentration period is overlooked. On the contrary, high sampling frequencies (from 3 h to 1 day) lead to a systematic overestimation (bias around 3%): highest concentrations are overweighted by the interpolation of the concentration in such case. The in situ sampling protocol generates less than 1% of load estimation error and sample highest concentration peaks. We consider useful such newly emerging field technologies to assess short-term variations of water quality parameters, to minimize the number of samples to be analysed and to assess the quality state of the stream at any time

    Giant palaeo-landslide dammed the Yangtze river

    Get PDF
    Field evidence is presented to demonstrate that a very large landslide blocked the Jinsha River (the main stem of the Yangtze) near the present day town of Qiaojia, Yunnan Province. The discovery is significant because no persistent river-blocking landslide has been reported so far downstream in a major catchment. At the location of the landslide dam the upstream catchment area is 445 × 103 km^2. Sediments deposited behind the dam indicate that the minimum crest height was approximately 200 m with a lake volume of 11.4 +/− 1.3 km^3. The landslide occurred on the western (Sichuan) side of the river and displaced an estimated volume of at least 3.75 km^3, with material riding up to 550 m above the river on the eastern (Yunnan) side of the valley. The location is at the intersection of the Xiaojiang and Zemuhe fault zones which form part of the eastern boundary fault of the Sichuan-Yunnan Fault Block, an area where many earthquakes exceeding magnitude 7.0 have been documented in the historical record

    Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches

    Get PDF
    The coupling of an hydrological and a crop model is an efficient approach to study the impact of the interactions between agricultural practices and catchment physical characteristics on stream water quality. We analyzed the consequences of using different modeling approaches of the processes controlling the nitrogen (N) dynamics in a small agricultural catchment monitored for 15 years. Two agro-hydrological models were applied: the fully distributed model TNT2 and the semi-distributed SWAT model. Using the same input dataset, the calibration process aimed at reproducing the same annual water and N balance in both models, to compare the spatial and temporal variability of the main N processes. The models simulated different seasonal cycles for soil N. The main processes involved were N mineralization and denitrification. TNT2 simulated marked seasonal variations with a net increase of mineralization in autumn, after a transient immobilization phase due to the burying of the straw with low C:N ratio. SWAT predicted a steady humus mineralization with an increase when straws are buried and a decrease afterwards. Denitrification was mainly occuring in autumn in TNT2 because of the dynamics of N availability in soil and of the climatic and hydrological conditions. SWAT predicts denitrification in winter, when mineral N is available in soil layers. The spatial distribution of these two processes was different as well: less denitrification in bottom land and close to ditches in TNT2, as a result of N transfer dynamics. Both models simulate correctly global trend and inter-annual variability of N losses in small agricultural catchment when a sufficient amount data is available for calibration. However, N processes and their spatial interactions are simulated very differently, in particular soil mineralization and denitrification. The use of such tools for prediction must be considered with care, unless a proper calibration and validation of the different N processes is carried out

    Combined investigations on long-term hydrochemical monitoring and high frequency measurements in the Critical Zone from the Auradé catchment (SW, France)

    Get PDF
    The Critical Zone (CZ) is now well identified as the land-atmosphere interface under the influence of many human pressures rendering up vulnerable for future generations. Although many investigations have been undergone over the last 30 years in the different compartments of the CZ, it remains important to understand the overall functioning of this area in a context of global change. A long-term hydrological and chemical monitoring was performed since 30 years for nitrates and discharge, and for 10 years for major elements at the stream outlet of a small agricultural carbonated catchment (Auradé site). This catchment is part of the observatories network OZCAR infrastructure and since 1992 it was a pilot for improving agricultural practices. Two time scales were investigated based on a discrete sampling during low water flow and hydrological events, and since 2006 on high frequency datas (every 10mn) for pH, conductivity, nitrate, temperature. . . using a multiparameter probe. The long-term trends indicated mostly a decreasing in nitrate, Ca and Mg concentrations namely and an increase in DOC, which can be related to the influence of the environmental practices (fertilizers inputs, vegetative filter strip etc..), but more recently to the changes in temperature and hydrological patterns (decreasing discharge and occurrence of rare but intensive events). The high frequency measurements on short-term events allowed: (i) to highlight the mechanisms involved in flux exportations (nycthemeral cycle for nitrates as ex.), (ii) to reconstruct the chemical patterns by correlating the parameters to major elements, and finally (iii) to have a better and more precise approach of the contribution of weathering and land use on the hydrochemical functioning of the CZ, particularly on the disturbance of carbon cycle by anthropogenic fingerprints

    Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Get PDF
    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transforma­ tion (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with dis­ charge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-201O dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar,and fertilizer amount were used as input variables.Con­tinuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes(around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity

    Long and short-term trends of stream hydrochemistry and high frequency surveys as indicators of the influence of climate change, agricultural practices and internal processes (Aurade agricultural catchment, SW France)

    Get PDF
    The hydrochemical time series of stream water from a cultivated catchment were investigated at different time scales and survey frequencies. A 35-year time series of nitrate concentration and discharge, a 15-year time series of major elements and dissolved organic carbon (DOC) concentrations were analysed from a yearly to a daily/hourly basis during discharge recession after storm event periods, to determine the origin of elements, the time trends and the main controlling factors of the trends. A significant decrease over time of nitrate, base cations and other major anions was observed. These trends were controlled by agricultural practice changes (decrease of N-fertiliser input, grass-band set up) and discharge increase, especially in the last years of the period. On the other hand, K and DOC increased over the 15-year period. This increase might result from both 1) organic matter eroded from the soil surface by runoff during flood events and 2) an increase in mineralisation with increasing temperature. Seasonal variations and nycthemeral cycles indicated either calcite precipitation and nitrification processes and/or evapotranspiration, water and/or vegetation uptake during the day with increasing temperature. This paper highlights that the hydrochemical parameters measured at various time scales and frequencies can be used as powerful indicators of catchment internal processes, and of changes in agricultural management and climate change. Particularly, the multivariate high-resolution survey has shown its ability to evidence very tenuous processes not detectable by discrete sampling. The recent observed changes in hydrology argue for the need to continue the hydrochemical survey over decades
    corecore