3,861 research outputs found
Dominant particle-hole contributions to the phonon dynamics in the spinless one-dimensional Holstein model
In the spinless Holstein model at half-filling the coupling of electrons to
phonons is responsible for a phase transition from a metallic state at small
coupling to a Peierls distorted insulated state when the electron-phonon
coupling exceeds a critical value. For the adiabatic case of small phonon
frequencies, the transition is accompanied by a phonon softening at the
Brillouin zone boundary whereas a hardening of the phonon mode occurs in the
anti-adiabatic case. The phonon dynamics studied in this letter do not only
reveal the expected renormalization of the phonon modes but also show
remarkable additional contributions due to electronic particle-hole
excitations.Comment: 7 pages, 4 figures and 1 table included; v2: discussion of Luttinger
liquid parameters adde
Coexistence of superconductivity and charge-density waves in a two-dimensional Holstein model at half-filling
In one dimension the coupling of electrons to phonons leads to a transition
from a metallic to a Peierls distorted insulated state if the coupling exceeds
a critical value. On the other hand, in two dimensions the electron-phonon
interaction may also lead to the formation of Cooper pairs. This competition of
superconductivity and charge order (in conjunction with a lattice distortion)
is studied in this letter by means of the projector-based renormalization
method (PRM). Increasing the electron-phonon interaction, we find a crossover
behavior between a purely superconducting state and a charge-density wave where
a well-defined parameter range of coexistence of superconductivity and lattice
distortion exists.Comment: 11 pages, 2 figure
Analytical approach to the quantum-phase transition in the one-dimensional spinless Holstein model
We study the one-dimensional Holstein model of spinless fermions interacting
with dispersion-less phonons by using a recently developed projector-based
renormalization method (PRM). At half-filling the system shows a
metal-insulator transition to a Peierls distorted state at a critical
electron-phonon coupling where both phases are described within the same
theoretical framework. The transition is accompanied by a phonon softening at
the Brillouin zone boundary and a gap in the electronic spectrum. For different
filling, the phonon softening appears away from the Brillouin zone boundary and
thus reflects a different type of broken symmetry state.Comment: 8 pages, 4 figures included; v2: completely revised and extended; v3:
minor changes, final version, to be published in Eur. Phys. J.
Phase separation in the Edwards model
The nature of charge transport within a correlated background medium can be
described by spinless fermions coupled to bosons in the model introduced by
Edwards. Combining numerical density matrix renormalization group and
analytical projector-based renormalization methods we explore the ground-state
phase diagram of the Edwards model in one dimension. Below a critical boson
frequency any long-range order disappears and the system becomes metallic. If
the charge carriers are coupled to slow quantum bosons the Tomonaga-Luttinger
liquid is attractive and finally makes room for a phase separated state, just
as in the t-J model. The phase boundary separating repulsive from the
attractive Tomonaga-Luttinger liquid is determined from long-wavelength charge
correlations, whereas fermion segregation is indicated by a vanishing inverse
compressibility. On approaching phase separation the photoemission spectra
develop strong anomalies.Comment: 6 pages, 5 figures, final versio
- …