3,219 research outputs found

    Some rare presentations of hydatid cysts: two case reports

    Get PDF
    Hydatid disease is a considerable health problem worldwide. Two case reports of relatively uncommon presentations of the disease are presented

    Characterization of time delay in power hardware in the loop setups

    Get PDF
    The testing of complex power components by means of power hardware in the loop (PHIL) requires accurate and stable PHIL platforms. The total time delay typically present within these platforms is commonly acknowledged to be an important factor to be considered due to its impact on accuracy and stability. However, a thorough assessment of the total loop delay in PHIL platforms has not been performed in the literature. Therefore, time delay is typically accounted for as a constant parameter. However, with the detailed analysis of the total loop delay performed in this article, variability in time delay has been detected as a result of the interaction between discrete components. Furthermore, a time delay characterization methodology (which includes variability in time delay) has been proposed. This will allow for performing stability analysis with higher precision as well as to perform accurate compensation of these delays. The implications on stability and accuracy that the time delay variability can introduce in PHIL simulations has also been studied. Finally, with an experimental validation procedure, the presence of the variability and the effectiveness of the proposed characterization approach have been demonstrated

    Intelligent Fault-Tolerant Mechanism for Data Centers of Cloud Infrastructure

    Get PDF
    Fault tolerance in cloud computing is considered as one of the most vital issues to deliver reliable services. Checkpoint/restart is one of the methods used to enhance the reliability of the cloud services. However, many existing methods do not focus on virtual machine (VM) failure that occurs due to the higher response time of a node, byzantine fault, and performance fault, and existing methods also ignore the optimization during the recovery phase. This paper proposes a checkpoint/restart mechanism to enhance reliability of cloud services. Our work is threefold: (1) we design an algorithm to identify virtual machine failure due to several faults; (2) an algorithm to optimize the checkpoint interval time is designed; (3) lastly, the asynchronous checkpoint/restart with log-based recovery mechanism is used to restart the failed tasks. The valuation results obtained using a real-time dataset shows that the proposed model reduces power consumption and improves the performance with a better fault tolerance solution compared to the nonoptimization method

    Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening

    Get PDF
    A series of Ti-25Nb-8Zr-xCr (x = 0, 2, 4, 6, 8 wt%) alloys were designed based on DV-Xα cluster method and e=a-Δr diagram with an anticipation to obtain high plasticity and significant strain hardening. The designed alloys were produced through cold crucible levitation melting technique in order to effectively investigate their micro-structures and mechanical properties. The addition of Cr significantly enhances the β stability in the microstructures of the Ti-25Nb-8Zr-xCr alloys. Both yield strength and hardness of the studied alloys increase due to the effect of solid-solution strengthening. By contrast, the plasticity, maximum strength and strain hardening rate are influenced by theβstability as well as the distinct deformation mechanisms. None of the alloys comprising Cr fail up to 100 kN (the load capacity used) and all show impressive plasticity (~75%) and superior maximum compressive strength (~4.5 GPa) at 100 kN. Moreover, the deformation bands, which are found around the hardness indentations, are analyzed for all the investigated alloys. The fracture behaviors of the Ti-25Nb-8Zr-xCr alloys are also studied to observe the characteristics related to crack propagation, plastic deformation and the formation of shear bands

    On Hilbert-Schmidt operator formulation of noncommutative quantum mechanics

    Full text link
    This work gives value to the importance of Hilbert-Schmidt operators in the formulation of a noncommutative quantum theory. A system of charged particle in a constant magnetic field is investigated in this framework

    Beta Oscillation-Targeted Neurofeedback Training Based on Subthalamic LFPs in Parkinsonian Patients

    Get PDF
    Increased oscillatory activities in the beta frequency band (13-30 Hz) in the subthalamic nucleus (STN), and in particular prolonged episodes of increased synchrony in this frequency band, have been associated with motor symptoms such as bradykinesia and rigidity in Parkinson's disease (PD). Numerous studies have investigated sensorimotor cortical beta oscillations either as a control signal for Brain Computer Interfaces (BCI) or as target signal for neurofeedback training (NFB). However, it still remains unknown whether patients with PD can gain control of the pathological oscillations recorded from a subcortical site - the STN - with neurofeedback training. We tried to address this question in the current study. Specifically, we designed a simple basketball game, in which the position of a basketball changes based on the occurrence of events of temporally increased beta power quantified in real-time. Participants practised in the game to control the position of the basketball, which requires modulation of the beta oscillations recorded from STN local field potentials (LFPs). Our results suggest that it is possible to use neurofeedback training for PD patients to downregulate pathological beta oscillations in STN LFPs, and that this can lead to a reduction of beta oscillations in the cortical-STN motor network

    The performance of robust multivariate Ewma control charts

    Get PDF
    Multivariate Exponential Weighted Moving Average (MEWMA) control chart is a popular statistical tool for monitoring multivariate process over time. However, this chart is sensitive to the presence of outliers arising from the use of classical mean vector and covariance matrix in estimating the MEWMA statistic. These classical estimators are known to be sensitive to the outliers. To address this problem, robust MEWMA control charts based on modified one-step M-estimator (MOM) and Winsorized modified one-step M-estimator (WM) are proposed. Their performance is then compared with the standard MEWMA control chart in various situations. The findings revealed that the proposed robust MEWMA control charts are more effective in controlling false alarm rates especially for large sample sizes and high percentage of outlier
    corecore