223 research outputs found

    Residual Paramagnetism of Cobalt in Some Cobalt (III) Complexes

    Get PDF

    Lag synchronization and scaling of chaotic attractor in coupled system

    Get PDF
    We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using the Hurwitz matrix stability. We are able to scale up or down the size of a driver attractor at a response system in presence of a lag. This allows compensating the attenuation of the amplitude of a signal during transmission through a delay line. The delay coupling is illustrated with numerical examples of 3D systems, the Hindmarsh-Rose neuron model, the R\"ossler system and a Sprott system and, a 4D system. We implemented the coupling in electronic circuit to realize any desired lag synchronization in chaotic oscillators and scaling of attractors.Comment: 10 pages, 7 figure

    Pan-aortic hybrid treatment of mega-aorta syndrome

    Get PDF
    Hybrid procedures combining traditional open and newer endovascular techniques are increasingly used to treat complex aortic disease. We present a novel approach for total aortic replacement, including hybrid repair of the arch and thoracoabdominal aorta, in a patient with “mega-aorta syndrome.” A two-stage approach using a valve-sparing aortic root replacement, total arch replacement (stage I elephant trunk), and left carotid-axillary bypass was used to treat the root, proximal-mid arch, and left subclavian aneurysmal pathology. This was followed by a hybrid distal arch/Extent II thoracoabdominal aneurysm repair 3 months later. After 15 months follow-up, the patient remains asymptomatic with an intact repair, no endoleak, and normal ventricular and aortic valve function. This case demonstrates a novel “pan-aortic” hybrid approach for repair of extensive thoracic aortic disease

    Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites

    Get PDF
    Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites. To investigate the capacity of lupus autoAb to produce glomerular immune deposits (ID) and nephritis, 24 murine monoclonal (m) anti-DNA antibodies (Ab), derived from either MRL-lpr/lpr, SNF1 or NZB lupus-prone mice and selected based on properties shared with nephritogenic Ig, were administered i.p. (as hybridomas) and i.v. (as purified Ig) to normal mice; at least four mice/mAb were evaluated. Three general patterns of immune deposit formation (IDF) were observed: extracellular ID within glomeruli (± blood vessels, N = 8); intranuclear ID (N = 5); or minimal or no ID (N = 11). The four MRL m anti-DNA Ab that produced significant extracellular ID demonstrated different disease profiles including: (a) mesangial and subendothelial ID with anti-basement membrane staining, associated with proliferative glomerulonephritis, PMN infiltration, and proteinuria; (b) diffuse fine granular mesangial and extraglomerular vascular ID, associated with proliferative glomerulonephritis and proteinuria; (c) dense intramem-branous ID and intraluminal ID, associated with capillary wall thickening, mesangial interposition and expansion, aneurysmal dilatation and intraluminal occlusion of glomerular capillary loops, and heavy proteinuria; and (d) mesangial and extraglomerular vascular ID, associated with mild segmental mesangial expansion, without proteinuria. These MRL mAb were derived from four different mice, and they had variable pis and isotypes. They all cross reacted with multiple autoantigens (autoAg), however, their autoAg binding profiles were distinguishable. Among the SNF1 derived mAb, four produced histologically and clinically indistinguishable disease characterized by diffuse mesangial and capillary wall ID, associated with cellular proliferation/infiltration and proteinuria. Three of the four mAb were derived from the same mouse and were clonally related; they were: IgG2b with SWR allotype, relatively cationic, highly cross reactive with similar Ag binding patterns, idiotypically related and encoded by identical VH and nearly identical VL sequences. We conclude that both the capacity of lupus autoAb to form ID and the location of IDF are dependent on properties unique to individual Ig. The results also indicate that the Ag binding region of the autoAb is influential in this process, and they suggest that multiple Ab-Ag interactions contribute to IDF in individuals with lupus nephritis. Furthermore, these observations raise the possibility that the pathologic and clinical abnormalities resulting from these interactions are influenced by the location of IDF, and that the dominant interaction, in a given individual, may be highly influential in the phenotypic expression of nephritis

    Risk factors for 1-year mortality after thoracic endovascular aortic repair

    Get PDF
    ObjectiveThoracic endovascular aortic repair, although physiologically well tolerated, may fail to confer significant survival benefit in some high-risk patients. In an effort to identify patients most likely to benefit from intervention, the present study sought to determine the risk factors for 1-year mortality after thoracic endovascular aortic repair.MethodsA retrospective review was performed on prospectively collected data from all patients undergoing thoracic endovascular aortic repair from 2002 to 2010 at a single institution. Univariate analysis and multivariate Cox proportional hazards regression analysis were used to identify risk factors associated with mortality within 1 year after thoracic endovascular aortic repair.ResultsDuring the study period, 282 patients underwent at least 1 thoracic endovascular aortic repair; index procedures included descending aortic repair (n = 189), hybrid arch repair (n = 55), and hybrid thoracoabdominal repair (n = 38). The 30-day/in-hospital mortality was 7.4% (n = 21) and the overall 1-year mortality was 19% (n = 54). Cardiopulmonary pathologies were the most common cause of nonperioperative 1-year mortality (22%, n = 12). Multivariate modeling demonstrated 3 variables independently associated with 1-year mortality: age older than 75 years (hazard ratio, 2.26; P = .005), aortic diameter greater than 6.5 cm (hazard ratio, 2.20; P = .007), and American Society of Anesthesiologists class 4 (hazard ratio, 1.85; P = .049). A baseline creatinine greater than 1.5 mg/dL (hazard ratio, 1.79; P = .05) and congestive heart failure (hazard ratio, 1.87; P = .08) were also retained in the final model. These 5 variables explained a large proportion of the risk of 1-year mortality (C statistic = 0.74).ConclusionsAge older than 75 years, aortic diameter greater than 6.5 cm, and American Society of Anesthesiologists class 4 are independently associated with 1-year mortality after thoracic endovascular aortic repair. These clinical characteristics may help risk-stratify patients undergoing thoracic endovascular aortic repair and identify those unlikely to derive a long-term survival benefit from the procedure

    Communication: Molecular-level insights into asymmetric triblock copolymers: Network and phase development

    Get PDF
    Copyright (2014) AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Journal of Chemical Physics (Communication) 141 and may be found at http://dx.doi.org/10.1063/1.4896612Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer can be used to elucidate the phase and property transformation from diblock to network-forming triblock copolymer. In this study, we use several theoretical formalisms and simulation methods to examine the molecular-level characteristics accompanying this transformation, and show that reported macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational fractions and copolymer morphologies are provided as functions of copolymer composition and temperature.Nonwovens Institute at North Carolina State University and the Polish Ministry of Science and Higher Education (Grant No. N204 125039)

    Noise-Aided Logic in an Electronic Analog of Synthetic Genetic Networks

    Get PDF
    We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logi

    An Electronic Analog of Synthetic Genetic Networks

    Get PDF
    An electronic analog of a synthetic genetic network known as the repressilator is proposed. The repressilator is a synthetic biological clock consisting of a cyclic inhibitory network of three negative regulatory genes which produces oscillations in the expressed protein concentrations. Compared to previous circuit analogs of the repressilator, the circuit here takes into account more accurately the kinetics of gene expression, inhibition, and protein degradation. A good agreement between circuit measurements and numerical prediction is observed. The circuit allows for easy control of the kinetic parameters thereby aiding investigations of large varieties of potential dynamics
    corecore