85 research outputs found

    A case of AML characterized by a novel t(4;15)(q31;q22) translocation that confers a growth-stimulatory response to retinoid-based therapy

    Get PDF
    Here we report the case of a 30-year-old woman with relapsed acute myeloid leukemia (AML) who was treated with all-transretinoic acid (ATRA) as part of investigational therapy (NCT02273102). The patient died from rapid disease progression following eight days of continuous treatment with ATRA. Karyotype analysis and RNA-Seq revealed the presence of a novel t(4;15)(q31;q22) reciprocal translocation involving theTMEM154andRASGRF1genes. Analysis of primary cells from the patient revealed the expression ofTMEM154-RASGRF1mRNA and the resulting fusion protein, but no expression of the reciprocalRASGRF1-TMEM154fusion. Consistent with the response of the patient to ATRA therapy, we observed a rapid proliferation of t(4;15) primary cells following ATRA treatment ex vivo. Preliminary characterization of the retinoid response of t(4;15) AML revealed that in stark contrast to non-t(4;15) AML, these cells proliferate in response to specific agonists of RARα and RARγ. Furthermore, we observed an increase in the levels of nuclear RARγ upon ATRA treatment. In summary, the identification of the novel t(4;15)(q31;q22) reciprocal translocation opens new avenues in the study of retinoid resistance and provides potential for a new biomarker for therapy of AML

    Powered bone marrow biopsy procedures produce larger core specimens, with less pain, in less time than with standard manual devices

    Get PDF
    Bone marrow sampling remains essential in the evaluation of hematopoietic and many non-hematopoietic disorders. One common limitation to these procedures is the discomfort experienced by patients. To address whether a Powered biopsy system could reduce discomfort while providing equivalent or better results, we performed a randomized trial in adult volunteers. Twenty-six subjects underwent bilateral biopsies with each device. Core samples were obtained in 66.7% of Manual insertions; 100% of Powered insertions (P=0.002). Initial mean biopsy core lengths were 11.1±4.5 mm for the Manual device; 17.0±6.8 mm for the Powered device (P<0.005). Pathology assessment for the Manual device showed a mean length of 6.1±5.6 mm, width of 1.0±0.7 mm, and volume of 11.0±10.8 mm3. Powered device measurements were mean length of 15.3±6.1 mm, width of 2.0±0.3 mm, and volume of 49.1±21.5 mm3 (P<0.001). The mean time to core ejection was 86 seconds for Manual device; 47 seconds for the Powered device (P<0.001). The mean second look overall pain score was 33.3 for the Manual device; 20.9 for the Powered (P=0.039). We conclude that the Powered biopsy device produces superior sized specimens, with less overall pain, in less time

    Amonafide: a future in treatment of resistant and secondary acute myeloid leukemia?

    No full text
    Development of the novel topoisomerase II inhibitor, amonafide, began almost 40 years ago. The drug was selected for further investigation owing to evidence of marked antineoplastic efficacy in preclinical models of cancer. When its usefulness in the treatment of various solid malignancies proved limited, focus was shifted to establishing its use as an antileukemic agent, specifically against secondary and treatment-associated acute myeloid leukemia (AML). While Phase I and II studies gave rise to hopes that amonafide might hold the key to treating older patients, including those with multidrug resistant, cytogenetically unfavorable secondary and treatment-associated AML, when used in combination with cytarabine, it failed to demonstrate a survival advantage over standard-of-care therapy in randomized studies. This article will outline the development of amonafide from the laboratory to the bedside and discuss the potential place that this agent has in the current management of AML
    corecore