3,526 research outputs found
Uneconomical Diagnosis of Cladograms: Comments on Wheeler and Nixon's Method for Sankoff Optimization
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74972/1/j.1096-0031.1997.tb00249.x.pd
Knowledge Rich Natural Language Queries over Structured Biological Databases
Increasingly, keyword, natural language and NoSQL queries are being used for
information retrieval from traditional as well as non-traditional databases
such as web, document, image, GIS, legal, and health databases. While their
popularity are undeniable for obvious reasons, their engineering is far from
simple. In most part, semantics and intent preserving mapping of a well
understood natural language query expressed over a structured database schema
to a structured query language is still a difficult task, and research to tame
the complexity is intense. In this paper, we propose a multi-level
knowledge-based middleware to facilitate such mappings that separate the
conceptual level from the physical level. We augment these multi-level
abstractions with a concept reasoner and a query strategy engine to dynamically
link arbitrary natural language querying to well defined structured queries. We
demonstrate the feasibility of our approach by presenting a Datalog based
prototype system, called BioSmart, that can compute responses to arbitrary
natural language queries over arbitrary databases once a syntactic
classification of the natural language query is made
Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally
Rickettsia are endosymbionts of arthropods, some of which are vectored to vertebrates where they cause disease. Recently, it has been found that some Rickettsia strains harbour conjugative plasmids and others encode some conjugative machinery within the bacterial genome. We investigated the distribution of these conjugation genes in a phylogenetically diverse collection of Rickettsia isolated from arthropods. We found that these genes are common throughout the genus and, in stark contrast to other genes in the genome, conjugation genes are frequently horizontally transmitted between strains. There is no evidence to suggest that these genes are preferentially transferred between phylogenetically related strains, which is surprising given that closely related strains infect similar host species. In addition to detecting patterns of horizontal transmission between diverse Rickettsia species, these findings have implications for the evolution of pathogenicity, the evolution of Rickettsia genomes and the genetic manipulation of intracellular bacteria
Generalized Buneman pruning for inferring the most parsimonious multi-state phylogeny
Accurate reconstruction of phylogenies remains a key challenge in
evolutionary biology. Most biologically plausible formulations of the problem
are formally NP-hard, with no known efficient solution. The standard in
practice are fast heuristic methods that are empirically known to work very
well in general, but can yield results arbitrarily far from optimal. Practical
exact methods, which yield exponential worst-case running times but generally
much better times in practice, provide an important alternative. We report
progress in this direction by introducing a provably optimal method for the
weighted multi-state maximum parsimony phylogeny problem. The method is based
on generalizing the notion of the Buneman graph, a construction key to
efficient exact methods for binary sequences, so as to apply to sequences with
arbitrary finite numbers of states with arbitrary state transition weights. We
implement an integer linear programming (ILP) method for the multi-state
problem using this generalized Buneman graph and demonstrate that the resulting
method is able to solve data sets that are intractable by prior exact methods
in run times comparable with popular heuristics. Our work provides the first
method for provably optimal maximum parsimony phylogeny inference that is
practical for multi-state data sets of more than a few characters.Comment: 15 page
Loss of genetic integrity and biological invasions result from stocking and introductions of Barbus barbus: Insights from rivers in England
Anthropogenic activities, including the intentional releases of fish for enhancing populations (stocking), are recognized as adversely impacting the adaptive potential of wild populations. Here, the genetic characteristics of European barbel Barbus barbus were investigated using 18 populations in England, where it is indigenous to eastern-flowing rivers and where stocking has been used to enhance these populations. Invasive populations are also present in western-flowing rivers following introductions of translocated fish. Two genetic clusters were evident in the indigenous range, centered on catchments in northeast and southeast England. However, stocking activities, including the release of hatchery-reared fish, have significantly reduced the genetic differentiation across the majority of this range. In addition, in smaller indigenous rivers, populations appeared to mainly comprise fish of hatchery origin. In the nonindigenous range, genetic data largely aligned to historical stocking records, corroborating information that one particular river (Kennet) in southeast England was the original source of most invasive B. barbus in England. It is recommended that these genetic outputs inform management measures to either restore or maintain the original genetic diversity of the indigenous rivers, as this should help ensure populations can maintain their ability to adapt to changing environmental conditions. Where stocking is considered necessary, it is recommended that only broodstock from within the catchment is used
Multiple colonization and dispersal events hide the early origin and induce a lack of genetic structure of the moss Bryum argenteum in Antarctica.
The dispersal routes of taxa with transoceanic disjunctions remain poorly understood, with the potential roles of Antarctica not yet demonstrated. Mosses are suitable organisms to test direct intra‐Antarctic dispersal, as major component of the extant Antarctic flora, with the cosmopolitan moss Bryum argenteum as ideal target species. We analyzed the genetic structure of B. argenteum to provide an evolutionary time frame for its radiation and shed light into its historical biogeography in the Antarctic region. We tested two alternative scenarios: (a) intra‐Antarctic panmixia and (b) intra‐Antarctic genetic differentiation. Furthermore, we tested for evidence of the existence of specific intra‐Antarctic dispersal routes. Sixty‐seven new samples (40 collected in Antarctica) were sequenced for ITS nrDNA and rps4 cpDNA regions, and phylogenetic trees of B. argenteum were constructed, with a focus on its Southern Hemisphere. Combining our new nrDNA dataset with previously published datasets, we estimated time‐calibrated phylogenies based on two different substitution rates (derived from angiosperms and bryophytes) along with ancestral area estimations. Minimum spanning network and pairwise genetic distances were also calculated. B. argenteum was potentially distributed across Africa and Antarctica soon after its origin. Its earliest intra‐Antarctic dispersal and diversification occurred during a warming period in the Pliocene. On the same timescale, a radiation took place involving a dispersal event from Antarctica to the sub‐Antarctic islands. A more recent event of dispersal and diversification within Antarctica occurred during a warm period in the Pleistocene, creating favorable conditions also for its colonization outside the Antarctic continent worldwide. We provide evidence supporting the hypothesis that contemporary populations of B. argenteum in Antarctica integrate a history of both multiple long‐range dispersal events and local persistence combined with in situ diversification. Our data support the hypothesis that B. argenteum has been characterized by strong connectivity within Antarctica, suggesting the existence of intra‐Antarctic dispersal routes
A revised generic classification of the tribe Sileneae (Caryophyllaceae)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73198/1/j.1756-1051.2000.tb00760.x.pd
Maximum principle and mutation thresholds for four-letter sequence evolution
A four-state mutation-selection model for the evolution of populations of
DNA-sequences is investigated with particular interest in the phenomenon of
error thresholds. The mutation model considered is the Kimura 3ST mutation
scheme, fitness functions, which determine the selection process, come from the
permutation-invariant class. Error thresholds can be found for various fitness
functions, the phase diagrams are more interesting than for equivalent
two-state models. Results for (small) finite sequence lengths are compared with
those for infinite sequence length, obtained via a maximum principle that is
equivalent to the principle of minimal free energy in physics.Comment: 25 pages, 16 figure
- …