3 research outputs found

    Comparative analysis of ferroelectric domain statistics via nonlinear diffraction in random nonlinear materials

    Get PDF
    © 2018 [Optical Society of America]. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.Peer ReviewedPostprint (published version

    Domain statistics analysis of random nonlinear crystals via second harmonic generation

    No full text
    We demonstrate an indirect non-destructive optical method for the characterization of ferroelectric domain size and distribution based on the analysis of the generated second harmonic spatial distribution. This method is based on a combination of experimental measurements and numerical simulations and allows obtaining information of domain statistics in disordered structures via the analysis of wavelength dependence of the angular second harmonic diffraction pattern.Postprint (author's final draft

    Comparative analysis of ferroelectric domain statistics via nonlinear diffraction in random nonlinear materials

    No full text
    © 2018 [Optical Society of America]. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.Peer Reviewe
    corecore