206 research outputs found

    Real-World Delivery of Rucaparib to Patients with Ovarian Cancer: Recommendations Based on an Integrated Safety Analysis of ARIEL2 and Study 10

    Get PDF
    Treatment options for women with recurrent ovarian cancer who have received two or more prior lines of chemotherapy have recently expanded with the U.S. Food and Drug Administration (FDA) and European Commission (EC) approvals of the poly(ADP‐ribose) polymerase (PARP) inhibitor rucaparib. As more oncologists begin to use rucaparib and other PARP inhibitors as part of routine clinical practice, awareness of possible side effects and how to adequately manage toxicities is crucial. In this review, we summarize the safety and tolerability of rucaparib reported in an integrated safety analysis that supported the FDA's initial approval of rucaparib in the treatment setting. Additionally, drawing on clinical data and our personal experience with rucaparib, we provide our recommendations on the management of common side effects observed with rucaparib, including anemia, blood creatinine elevations, alanine aminotransferase and aspartate aminotransferase elevations, thrombocytopenia, gastrointestinal‐related events (e.g., nausea, vomiting), and asthenia and fatigue. These side effects, many of which appear to be class effects of PARP inhibitors, are often self‐limiting and can be managed with adequate interventions such as treatment interruption and/or dose reduction and the use of supportive therapies. Supportive therapies may include blood transfusions for patients with anemia, prophylactic medications to prevent nausea and vomiting, or behavioral interventions to mitigate fatigue. Understanding and appropriate management of potential side effects associated with rucaparib may allow patients with ovarian cancer to continue to benefit from rucaparib treatment. Implications for Practice. Rucaparib was recently approved in the U.S. and European Union for use as treatment or maintenance for recurrent ovarian cancer. This review focuses on the safety and tolerability of rucaparib in the treatment setting. Similar side effects are observed in the maintenance setting. Drawing on the authors’ clinical experience with rucaparib, rucaparib prescribing information, and published supportive cancer care guidelines, this review discusses how to optimally manage common rucaparib‐associated side effects in patients with advanced ovarian cancer in the real‐world oncology setting. Adequate management of such side effects is crucial for allowing patients with ovarian cancer to remain on treatment to receive optimal efficacy benefit

    Rucaparib for patients with platinum-sensitive, recurrent ovarian carcinoma (ARIEL3): post-progression outcomes and updated safety results from a randomised, placebo-controlled, phase 3 trial

    Get PDF
    BACKGROUND: In ARIEL3, rucaparib maintenance treatment significantly improved progression-free survival versus placebo. Here, we report prespecified, investigator-assessed, exploratory post-progression endpoints and updated safety data. METHODS: In this ongoing (enrolment complete) randomised, placebo-controlled, phase 3 trial, patients aged 18 years or older who had platinum-sensitive, high-grade serous or endometrioid ovarian, primary peritoneal, or fallopian tube carcinoma and an Eastern Cooperative Oncology Group performance status of 0 or 1 who had received at least two previous platinum-based chemotherapy regimens and responded to their last platinum-based regimen were randomly assigned (2:1) to oral rucaparib (600 mg twice daily) or placebo in 28-day cycles using a computer-generated sequence (block size of six with stratification based on homologous recombination repair gene mutation status, progression-free interval following penultimate platinum-based regimen, and best response to most recent platinum-based regimen). Patients, investigators, site staff, assessors, and the funder were masked to assignments. The primary endpoint of investigator-assessed progression-free survival has been previously reported. Prespecified, exploratory outcomes of chemotherapy-free interval (CFI), time to start of first subsequent therapy (TFST), time to disease progression on subsequent therapy or death (PFS2), and time to start of second subsequent therapy (TSST) and updated safety were analysed (visit cutoff Dec 31, 2017). Efficacy analyses were done in all patients randomised to three nested cohorts: patients with BRCA mutations, patients with homologous recombination deficiencies, and the intention-to-treat population. Safety analyses included all patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, NCT01968213. FINDINGS: Between April 7, 2014, and July 19, 2016, 564 patients were enrolled and randomly assigned to rucaparib (n=375) or placebo (n=189). Median follow-up was 28·1 months (IQR 22·0-33·6). In the intention-to-treat population, median CFI was 14·3 months (95% CI 13·0-17·4) in the rucaparib group versus 8·8 months (8·0-10·3) in the placebo group (hazard ratio [HR] 0·43 [95% CI 0·35-0·53]; p<0·0001), median TFST was 12·4 months (11·1-15·2) versus 7·2 months (6·4-8·6; HR 0·43 [0·35-0·52]; p<0·0001), median PFS2 was 21·0 months (18·9-23·6) versus 16·5 months (15·2-18·4; HR 0·66 [0·53-0·82]; p=0·0002), and median TSST was 22·4 months (19·1-24·5) versus 17·3 months (14·9-19·4; HR 0·68 [0·54-0·85]; p=0·0007). CFI, TFST, PFS2, and TSST were also significantly longer with rucaparib than placebo in the BRCA-mutant and homologous recombination-deficient cohorts. The most frequent treatment-emergent adverse event of grade 3 or higher was anaemia or decreased haemoglobin (80 [22%] patients in the rucaparib group vs one [1%] patient in the placebo group). Serious treatment-emergent adverse events were reported in 83 (22%) patients in the rucaparib group and 20 (11%) patients in the placebo group. Two treatment-related deaths have been previously reported in this trial; there were no new treatment-related deaths. INTERPRETATION: In these exploratory analyses over a median follow-up of more than 2 years, rucaparib maintenance treatment led to a clinically meaningful delay in starting subsequent therapy and provided lasting clinical benefits versus placebo in all three analysis cohorts. Updated safety data were consistent with previous reports. FUNDING: Clovis Oncology

    Rucaparib maintenance treatment for recurrent ovarian carcinoma: the effects of progression-free interval and prior therapies on efficacy and safety in the randomized phase III trial ARIEL3

    Get PDF
    INTRODUCTION: In ARIEL3 (NCT01968213), the poly(adenosine diphosphate-ribose) polymerase inhibitor rucaparib significantly improved progression-free survival versus placebo regardless of biomarker status when used as maintenance treatment for recurrent ovarian cancer. The aim of the current analyses was to evaluate the efficacy and safety of rucaparib in subgroups based on progression-free interval following penultimate platinum, number of prior chemotherapies, and prior use of bevacizumab. METHODS: Patients were randomized 2:1 to rucaparib 600 mg twice daily or placebo. Within subgroups, progression-free survival was assessed in prespecified, nested cohorts: BRCA-mutant, homologous recombination deficient (BRCA-mutant or wild-type BRCA/high genomic loss of heterozygosity), and the intent-to-treat population. RESULTS: In the intent-to-treat population, median investigator-assessed progression-free survival was 8.2 months with rucaparib versus 4.1 months with placebo (n=151 vs n=76; HR 0.33, 95% CI 0.24 to 0.46, p12 months. Median progression-free survival was 10.4 versus 5.4 months (n=231 vs n=124; HR 0.42, 95% CI 0.32 to 0.54, p<0.0001) for patients who had received two prior chemotherapies, and 11.1 versus 5.3 months (n=144 vs n=65; HR 0.28, 95% CI 0.19 to 0.41, p<0.0001) for those who had received ≥3 prior chemotherapies. Median progression-free survival was 10.3 versus 5.4 months (n=83 vs n=43; HR 0.42, 95% CI 0.26 to 0.68, p=0.0004) for patients who had received prior bevacizumab, and 10.9 versus 5.4 months (n=292 vs n=146; HR 0.35, 95% CI 0.28 to 0.45, p<0.0001) for those who had not. Across subgroups, median progression-free survival was also significantly longer with rucaparib versus placebo in the BRCA-mutant and homologous recombination deficient cohorts. Safety was consistent across subgroups. CONCLUSIONS: Rucaparib maintenance treatment significantly improved progression-free survival versus placebo irrespective of progression-free interval following penultimate platinum, number of lines of prior chemotherapy, and previous use of bevacizumab

    Sustained platelet-sparing effect of weekly low dose paclitaxel allows effective, tolerable delivery of extended dose dense weekly carboplatin in platinum resistant/refractory epithelial ovarian cancer

    Get PDF
    Background: Platinum agents have shown demonstrable activity in the treatment of patients with platinum resistant, recurrent ovarian cancer when delivered in a "dose-dense" fashion. However, the development of thrombocytopenia limits the weekly administration of carboplatin to no greater than AUC 2. Paclitaxel has a well-described platelet sparing effect however its use to explicitly provide thromboprotection in the context of dose dense carboplatin has not been explored. Methods: We treated seven patients with platinum resistant ovarian cancer who had previously received paclitaxel or who had developed significant peripheral neuropathy precluding the use of further full dose weekly paclitaxel. Results: We were able to deliver carboplatin AUC 3 and paclitaxel 20 mg/m(2) with no thrombocytopenia or worsening of neuropathic side-effects, and with good activity. Conclusions: We conclude that this regimen may be feasible and active, and could be formally developed as a "platinum-focussed dose-dense scaffold" into which targeted therapies that reverse platinum resistance can be incorporated, and merits further evaluation

    Extended weekly dose-dense paclitaxel/carboplatin is feasible and active in heavily pre-treated platinum-resistant recurrent ovarian cancer

    Get PDF
    There is increasing evidence of the efficacy of dose-dense therapy in the management of platinum-resistant/refractory ovarian cancer. We report our experience of extended weekly carboplatin and paclitaxel in this population group. Twenty patients with platinum-resistant/refractory ovarian cancer received carboplatin AUC 3 and paclitaxel 70 mg m−2 on day 1, 8, 15 q 4 weekly for six planned cycles. Toxicity was assessed using Common Toxicity Criteria. Response was evaluated using radiological and CA125 criteria. Median age was 61 years (range 40–74 years). Median number of prior therapies is three (range 1–8). Response rate was 60% by radiological criteria (RECIST) and 76% by CA125 assessment. Grade 3 toxicities consisted of neutropenia (29% of patients) and anaemia (5%). One patient experienced grade 4 neutropenia. No grade 3/4 thombocytopaenia was reported. Fatigue, nausea and peripheral neuropathy were the most frequent non-hematological side effects. Median progression-free survival was 7.9 months and overall survival was 13.3 months. The dynamics of response to dose-dense therapy were as rapid as with front-line therapy within the same patient. This dose-dense regimen can be extended to at least 18 weekly cycles over 6 months and is well tolerated with high response rates in heavily pre-treated, platinum-resistant ovarian cancer. It forms a highly active and tolerable cytotoxic scaffold to which molecular-targeted therapies can be added in platinum-resistant ovarian cancer

    Gene therapy for carcinoma of the breast: Therapeutic genetic correction strategies

    Get PDF
    Gene therapy is a therapeutic approach that is designed to correct specific molecular defects that contribute to the cause or progression of cancer. Genes that are mutated or deleted in cancers include the cancer susceptibility genes p53 and BRCA1. Because mutational inactivation of gene function is specific to tumor cells in these settings, cancer gene correction strategies may provide an opportunity for selective targeting without significant toxicity for normal nontumor cells. Both p53 and BRCA1 appear to inhibit cancer cells that lack mutations in these genes, suggesting that the so-called gene correction strategies may have broader potential than initially believed. Increasing knowledge of cancer genetics has identified these and other genes as potential targets for gene replacement therapy. Initial patient trials of p53 and BRCA1 gene therapy have provided some indications of potential efficacy, but have also identified areas of basic and clinical research that are needed before these approaches may be widely used in patient care

    FDG-PET Parameters as Prognostic Factor in Esophageal Cancer Patients: A Review

    Get PDF
    Background:18F-fluorodeoxyglucose positron emission tomography (FDG-PET) has been used extensively to explore whether FDG Uptake can be used to provide prognostic information for esophageal cancer patients. The aim of the present review is to evaluate the literature available to date concerning the potential prognostic value of FDG uptake in esophageal cancer patients, in terms of absolute pretreatment values and of decrease in FDG uptake during or after neoadjuvant therapy. Methods: A computer-aided search of the English language literature concerning esophageal cancer and standardized uptake values was performed. This search focused on clinical studies evaluating the prognostic value of FDG uptake as an absolute value or the decrease in FDG uptake and using overall mortality and/or disease-related mortality as an end point. Results: In total, 31 studies met the predefined criteria. Two main groups were identified based on the tested prognostic parameter: (1) FDG uptake and (2) decrease in FDG uptake. Most studies showed that pretreatment FDG uptake and postneoadjuvant treatment FDG uptake, as absolute values, are predictors for survival in univariate analysis. Moreover, early decrease in FDG uptake during neoadjuvant therapy is predictive for response and survival in most studies described. However, late decrease in FDG uptake after completion of neoadjuvant therapy was predictive for pathological response and survival in only 2 of 6 studies. Conclusions: Measuring decrease in FDG uptake early during neoadjuvant therapy is most appealing, moreover because the observed range of values expressed as relative decrease to discriminate responding from nonresponding patients is very small. At present inter-institutional comparison of results is difficult because several different normalization factors for FDG uptake are in use. Therefore, more research focusing on standardization of protocols and inter-institutional differences should be performed, before a PET-guided algorithm can be universally advocated

    Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance.

    Get PDF
    Although PARP inhibitors (PARPi) target homologous recombination defective tumours, drug resistance frequently emerges, often via poorly understood mechanisms. Here, using genome-wide and high-density CRISPR-Cas9 "tag-mutate-enrich" mutagenesis screens, we identify close to full-length mutant forms of PARP1 that cause in vitro and in vivo PARPi resistance. Mutations both within and outside of the PARP1 DNA-binding zinc-finger domains cause PARPi resistance and alter PARP1 trapping, as does a PARP1 mutation found in a clinical case of PARPi resistance. This reinforces the importance of trapped PARP1 as a cytotoxic DNA lesion and suggests that PARP1 intramolecular interactions might influence PARPi-mediated cytotoxicity. PARP1 mutations are also tolerated in cells with a pathogenic BRCA1 mutation where they result in distinct sensitivities to chemotherapeutic drugs compared to other mechanisms of PARPi resistance (BRCA1 reversion, 53BP1, REV7 (MAD2L2) mutation), suggesting that the underlying mechanism of PARPi resistance that emerges could influence the success of subsequent therapies
    corecore