21 research outputs found

    The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: a systematic review and meta-analysis.

    Get PDF
    Moderate correlation exists between the imaging quantification of brain white matter lesions and cognitive performance in people with multiple sclerosis (MS). This may reflect the greater importance of other features, including subvisible pathology, or methodological limitations of the primary literature.To summarise the cognitive clinico-radiological paradox and explore the potential methodological factors that could influence the assessment of this relationship.Systematic review and meta-analysis of primary research relating cognitive function to white matter lesion burden.Fifty papers met eligibility criteria for review, and meta-analysis of overall results was possible in thirty-two (2050 participants). Aggregate correlation between cognition and T2 lesion burden was r = -0.30 (95% confidence interval: -0.34, -0.26). Wide methodological variability was seen, particularly related to key factors in the cognitive data capture and image analysis techniques.Resolving the persistent clinico-radiological paradox will likely require simultaneous evaluation of multiple components of the complex pathology using optimum measurement techniques for both cognitive and MRI feature quantification. We recommend a consensus initiative to support common standards for image analysis in MS, enabling benchmarking while also supporting ongoing innovation

    Cognitive decline in multiple sclerosis : impact of topographic lesion distribution on differential cognitive deficit patterns

    No full text
    BACKGROUND: Multiple sclerosis (MS) is often accompanied by cognitive dysfunction. A negative correlation between cerebral lesion load and atrophy and cognitive performance has been pointed out almost consistently. Further, the distribution of lesions might be critical for the emergence of specific patterns of cognitive deficits. OBJECTIVE: The current study evaluated the significance of total lesion area (TLA) and central atrophy for the prediction of general cognitive dysfunction and tested for a correspondence between lesion topography and specific cognitive deficit patterns. METHODS: Thirty-seven patients with MS underwent neuropsychological assessment and magnetic resonance imaging. Lesion burden and central atrophy were quantified. Patients were classified into three groups by means of individual lesion topography (punctiform lesions/periventricular lesions/confluencing lesions in both periventricular and extra-periventricular regions). RESULTS: TLA was significantly related to 7 cognitive variables, whereas third ventricle width was significantly associated with 20 cognitive parameters. The three groups differed significantly in their performances on tasks concerning alertness, mental speed, and memory function. CONCLUSION: Third ventricle width as a straight-forward measure of central atrophy proved to be of substantial predictive value for cognitive dysfunction, whereas total lesion load played only a minor role. Periventricular located lesions were significantly related to decreased psychomotor speed, whereas equally distributed cerebral lesion load did not. These findings support the idea that periventricular lesions have a determinant impact on cognition in patients with MS
    corecore