384 research outputs found

    Entanglement of purification: from spin chains to holography

    Full text link
    Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.Comment: 40 pages, multiple figures. v2: references added, typos correcte

    Hidden Fermi surfaces in compressible states of gauge-gravity duality

    Get PDF
    General scaling arguments, and the behavior of the thermal entropy density, are shown to lead to an infrared metric holographically representing a compressible state with hidden Fermi surfaces. This metric is characterized by a general dynamic critical exponent, z, and a specific hyperscaling violation exponent, \theta. The same metric exhibits a logarithmic violation of the area law of entanglement entropy, as shown recently by Ogawa et al. (arXiv:1111.1023). We study the dependence of the entanglement entropy on the shape of the entangling region(s), on the total charge density, on temperature, and on the presence of additional visible Fermi surfaces of gauge-neutral fermions; for the latter computations, we realize the needed metric in an Einstein-Maxwell-dilaton theory. All our results support the proposal that the holographic theory describes a metallic state with hidden Fermi surfaces of fermions carrying gauge charges of deconfined gauge fields.Comment: 33 pages, 5 figures; (v2) added refs, corrected typos, and modified figure; (v3) added table summarizing result

    Holographic Geometry of Entanglement Renormalization in Quantum Field Theories

    Get PDF
    We study a conjectured connection between the AdS/CFT and a real-space quantum renormalization group scheme, the multi-scale entanglement renormalization ansatz (MERA). By making a close contact with the holographic formula of the entanglement entropy, we propose a general definition of the metric in the MERA in the extra holographic direction, which is formulated purely in terms of quantum field theoretical data. Using the continuum version of the MERA (cMERA), we calculate this emergent holographic metric explicitly for free scalar boson and free fermions theories, and check that the metric so computed has the properties expected from AdS/CFT. We also discuss the cMERA in a time-dependent background induced by quantum quench and estimate its corresponding metric.Comment: 42pages, 9figures, reference added, minor chang

    Large-density field theory, viscosity, and "2kF2k_F" singularities from string duals

    Get PDF
    We analyze systems where an effective large-N expansion arises naturally in gauge theories without a large number of colors: a sufficiently large charge density alone can produce a perturbative string ('tHooft) expansion. One example is simply the well-known NS5/F1 system dual to AdS3×T4×S3AdS_3\times T^4\times S^3, here viewed as a 5+1 dimensional theory at finite density. This model is completely stable, and we find that the existing string-theoretic solution of this model yields two interesting results. First, it indicates that the shear viscosity is not corrected by α\alpha' effects in this system. For flow perpendicular to the F1 strings the viscosity to entropy ratio take the usual value 1/4π1/4\pi, but for flow parallel to the F1's it vanishes as T2T^2 at low temperature. Secondly, it encodes singularities in correlation functions coming from low-frequency modes at a finite value of the momentum along the T4T^4 directions. This may provide a strong coupling analogue of finite density condensed matter systems for which fermionic constituents of larger operators contribute so-called "2kF2k_F" singularities. In the NS5/F1 example, stretched strings on the gravity side play the role of these composite operators. We explore the analogue for our system of the Luttinger relation between charge density and the volume bounded by these singular surfaces. This model provides a clean example where the string-theoretic UV completion of the gravity dual to a finite density field theory plays a significant and calculable role.Comment: 28 pages. v2: added reference

    COMPUTER-CONTROLLED GAS CHROMATOGRAPH CAPABLE OF ''REAL-TIME'' READOUT OF HIGH-PRECISION DATA.

    Get PDF
    A gas chromatograph has been assembled which provides computer control of sample injection, column temperature, and flow rate, plus direct computer readout of inlet pressure, mass flow rate, and detector response. Data processing yields, in real-time, a standard deviation of less than 0.05% in retention time, which is comparable to previous results obtained using an off-line computer. However, corrected retention volumes determined in real-time had a standard deviation of about 0.4% which reflected primarily the uncertainty in flow measurement

    Moduli Spaces of Cold Holographic Matter

    Full text link
    We use holography to study (3+1)-dimensional N=4 supersymmetric Yang-Mills theory with gauge group SU(Nc), in the large-Nc and large-coupling limits, coupled to a single massless (n+1)-dimensional hypermultiplet in the fundamental representation of SU(Nc), with n=3,2,1. In particular, we study zero-temperature states with a nonzero baryon number charge density, which we call holographic matter. We demonstrate that a moduli space of such states exists in these theories, specifically a Higgs branch parameterized by the expectation values of scalar operators bilinear in the hypermultiplet scalars. At a generic point on the Higgs branch, the R-symmetry and gauge group are spontaneously broken to subgroups. Our holographic calculation consists of introducing a single probe Dp-brane into AdS5 times S^5, with p=2n+1=7,5,3, introducing an electric flux of the Dp-brane worldvolume U(1) gauge field, and then obtaining explicit solutions for the worldvolume fields dual to the scalar operators that parameterize the Higgs branch. In all three cases, we can express these solutions as non-singular self-dual U(1) instantons in a four-dimensional space with a metric determined by the electric flux. We speculate on the possibility that the existence of Higgs branches may point the way to a counting of the microstates producing a nonzero entropy in holographic matter. Additionally, we speculate on the possible classification of zero-temperature, nonzero-density states described holographically by probe D-branes with worldvolume electric flux.Comment: 56 pages, 8 PDF images, 4 figure

    Entanglement Entropy from a Holographic Viewpoint

    Get PDF
    The entanglement entropy has been historically studied by many authors in order to obtain quantum mechanical interpretations of the gravitational entropy. The discovery of AdS/CFT correspondence leads to the idea of holographic entanglement entropy, which is a clear solution to this important problem in gravity. In this article, we would like to give a quick survey of recent progresses on the holographic entanglement entropy. We focus on its gravitational aspects, so that it is comprehensible to those who are familiar with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity, minor correction

    Luttinger's theorem, superfluid vortices, and holography

    Full text link
    Strongly coupled field theories with gravity duals can be placed at finite density in two ways: electric field flux emanating from behind a horizon, or bulk charged fields outside of the horizon that explicitly source the density. We discuss field-theoretical observables that are sensitive to this distinction. If the charged fields are fermionic, we discuss a modified Luttinger's theorem that holds for holographic systems, in which the sum of boundary theory Fermi surfaces counts only the charge outside of the horizon. If the charged fields are bosonic, we show that the the resulting superfluid phase may be characterized by the coefficient of the transverse Magnus force on a moving superfluid vortex, which again is sensitive only to the charge outside of the horizon. For holographic systems these observables provide a field-theoretical way to distinguish how much charge is held by a dual horizon, but they may be useful in more general contexts as measures of deconfined (i.e. "fractionalized") charge degrees of freedom.Comment: 21 pages; version 2: minor changes, version to be published in CQG; version 3: minor change

    Boundary States as Holographic Duals of Trivial Spacetimes

    Get PDF
    We study real-space quantum entanglement included in conformally invariant boundary states in conformal field theories (CFTs). First, we argue that boundary states essentially have no real-space entanglement by computing the entanglement entropy when we bipartite the system into two spatial regions. From the viewpoint of holography, this shows that boundary states are dual to trivial spacetimes of zero spactime volume. Next, we point out that a continuous multiscale entanglement renormalization ansatz (cMERA) for any CFTs can be formulated by employing a boundary state as its infrared unentangled state with an appropriate regularization. Exploiting this idea, we propose an approximation scheme of cMERA construction for general CFTs.Comment: 30 pages, 4 figure
    corecore