Purification is a powerful technique in quantum physics whereby a mixed
quantum state is extended to a pure state on a larger system. This process is
not unique, and in systems composed of many degrees of freedom, one natural
purification is the one with minimal entanglement. Here we study the entropy of
the minimally entangled purification, called the entanglement of purification,
in three model systems: an Ising spin chain, conformal field theories
holographically dual to Einstein gravity, and random stabilizer tensor
networks. We conjecture values for the entanglement of purification in all
these models, and we support our conjectures with a variety of numerical and
analytical results. We find that such minimally entangled purifications have a
number of applications, from enhancing entanglement-based tensor network
methods for describing mixed states to elucidating novel aspects of the
emergence of geometry from entanglement in the AdS/CFT correspondence.Comment: 40 pages, multiple figures. v2: references added, typos correcte