24 research outputs found

    Effects of body size on estimation of mammalian area requirements.

    Get PDF
    Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied blockcross validation to quantify bias in empirical home range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changedsubstantially at the upper end of the mass spectrum

    Effects of body size on estimation of mammalian area requirements

    Get PDF
    Accurately quantifying species’ area requirements is a prerequisite for effective area‐based conservation. This typically involves collecting tracking data on species of interest and then conducting home‐range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home‐range areas with GPS locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4,000 kg. We then applied block cross‐validation to quantify bias in empirical home‐range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum

    Letters Back Home

    No full text

    Resource selection by coyotes (Canis latrans) in a longleaf pine ecosystem: effects of anthropogenic fires and landscape features

    No full text
    Prescribed fire is used to restore and maintain fire-dependent forest communities. Because fire affects food and cover resources, fire-mediated resource selection has been documented for many wildlife species. The first step in understanding these interactions is to understand resource selection of the predators in a fire-maintained system. We attached GPS radiocollars to 27 coyotes (Canis latrans Say, 1823) and examined resource selection relative to fire-maintained vegetation types, years-since-fire, anthropogenic features that facilitate prescribed burning, and other landscape features likely to affect coyote resource selection. Coyote home ranges were characterized by more open vegetation types and more recently burned forest (i.e., burned 0 â 1 year prior) than available on the study area. Within their home ranges, coyotes avoided areas close to densely vegetated drainages and paved roads. Coyote selection of more recently burned forest likely was in response to greater prey density or increased ability to detect prey soon after vegetation cover was reduced by fires; similarly, coyotes likely avoided drainages due to decreased hunting efficiency. Coyote resource selection was linked to prescribed fire, suggesting the interaction between fire and coyotes may influence ecosystem function in fire-dependent forests.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore