36 research outputs found

    Reducing green turtle bycatch in small-scale fisheries using illuminated gillnets: The Cost of Saving a Sea Turtle

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Gillnet fisheries exist throughout the oceans and have been implicated in high bycatch rates of sea turtles. In this study, we examined the effectiveness of illuminating nets with light-emitting diodes (LEDs), placed on floatlines in order to reduce sea turtle bycatch in a small-scale bottom-set gillnet fishery. In Sechura Bay, Northern Peru, 114 pairs of control and illuminated nets were deployed. The predicted mean Catch Per Unit of Effort (CPUE) of target species, standardized for environmental variables using generalized additive model analysis, was similar for both control and illuminated nets. In contrast, the predicted mean CPUE of green turtles (Chelonia mydas) was reduced by 63.9% in illuminated nets. One hundred twenty-five green turtles were caught in control nets while 62 were caught in illuminated nets. This statistically significant reduction (GAM analysis, p<0.05) in sea turtle bycatch suggests that net illumination could be an effective conservation tool. Challenges to implementing the use of LEDs include equipment costs, increased net handling times, and limited awareness among fishermen regarding the effectiveness of this technology. Cost estimates for preventing a single sea turtle catch are as low as 34USD,whilethecoststooutfittheentiregillnetfisheryinSechuraBaycanbeaslowas34 USD, while the costs to outfit the entire gillnet fishery in Sechura Bay can be as low as 9200 USD. Understanding these cost challenges emphasizes the need for institutional support from national ministries, international non-governmental organizations and the broader fisheries industry to make possible widespread implementation of net illumination as a sea turtle bycatch reduction strategy.ProDelphinusDarwin InitiativeNational Marine Fisheries Service of the National Oceanic and Atmospheric AdministrationUniversity of Hawaii Joint Institute for Marine and Atmospheric Researc

    SCExAO/MEC and CHARIS Discovery of a Low Mass, 6 AU-Separation Companion to HIP 109427 using Stochastic Speckle Discrimination and High-Contrast Spectroscopy

    Get PDF
    We report the direct imaging discovery of a low-mass companion to the nearby accelerating A star, HIP 109427, with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument coupled with the MKID Exoplanet Camera (MEC) and CHARIS integral field spectrograph. CHARIS data reduced with reference star PSF subtraction yield 1.1-2.4 μ\mum spectra. MEC reveals the companion in YY and JJ band at a comparable signal-to-noise ratio using stochastic speckle discrimination, with no PSF subtraction techniques. Combined with complementary follow-up LpL_{\rm p} photometry from Keck/NIRC2, the SCExAO data favors a spectral type, effective temperature, and luminosity of M4-M5.5, 3000-3200 KK, and log10(L/L)=2.280.04+0.04\log_{10}(L/L_{\rm \odot}) = -2.28^{+0.04}_{-0.04}, respectively. Relative astrometry of HIP 109427 B from SCExAO/CHARIS and Keck/NIRC2, and complementary Gaia-Hipparcos absolute astrometry of the primary favor a semimajor axis of 6.550.48+3.06.55^{+3.0}_{-0.48} au, an eccentricity of 0.540.15+0.280.54^{+0.28}_{-0.15}, an inclination of 66.714+8.566.7^{+8.5}_{-14} degrees, and a dynamical mass of 0.2800.059+0.180.280^{+0.18}_{-0.059} MM_{\odot}. This work shows the potential for extreme AO systems to utilize speckle statistics in addition to widely-used post-processing methods to directly image faint companions to nearby stars near the telescope diffraction limit.Comment: 13 pages, 7 figures, 3 table
    corecore