8,864 research outputs found
Predicting glaucomatous visual field deterioration through short multivariate time series modelling
In bio-medical domains there are many
applications involving the modelling of
multivariate time series (MTS) data. One area
that has been largely overlooked so far is the
particular type of time series where the data set
consists of a large number of variables but with
a small number of observations. In this paper we
describe the development of a novel computational
method based on genetic algorithms that bypasses
the size restrictions of traditional statistical
MTS methods, makes no distribution assumptions,
and also locates the order and associated
parameters as a whole step. We apply this method to the prediction and modelling of glaucomatous
visual field deterioration
Comprehension of object-oriented software cohesion: The empirical quagmire
Chidamber and Kemerer (1991) proposed an object-oriented (OO) metric suite which included the Lack of Cohesion Of Methods (LCOM) metric. Despite considerable effort both theoretically and empirically since then, the software engineering community is still no nearer finding a generally accepted definition or measure of OO cohesion. Yet, achieving highly cohesive software is a cornerstone of software comprehension and hence, maintainability. In this paper, we suggest a number of suppositions as to why a definition has eluded (and we feel will continue to elude) us. We support these suppositions with empirical evidence from three large C++ systems and a cohesion metric based on the parameters of the class methods; we also draw from other related work. Two major conclusions emerge from the study. Firstly, any sensible cohesion metric does at least provide insight into the features of the systems being analysed. Secondly however, and less reassuringly, the deeper the investigative search for a definitive measure of cohesion, the more problematic its understanding becomes; this casts serious doubt on the use of cohesion as a meaningful feature of object-orientation and its viability as a tool for software comprehension
RGFGA: An efficient representation and crossover for grouping genetic algorithms
There is substantial research into genetic algorithms that are used to group large numbers of
objects into mutually exclusive subsets based upon some fitness function. However, nearly all
methods involve degeneracy to some degree.
We introduce a new representation for grouping genetic algorithms, the restricted growth function
genetic algorithm, that effectively removes all degeneracy, resulting in a more efficient search. A new crossover operator is also described that exploits a measure of similarity between chromosomes in a population. Using several synthetic datasets, we compare the performance of our representation and crossover with another well known state-of-the-art GA method, a strawman
optimisation method and a well-established statistical clustering algorithm, with encouraging results
Variable grouping in multivariate time series via correlation
The decomposition of high-dimensional multivariate time series (MTS) into a number of low-dimensional MTS is a useful but challenging task because the number of possible dependencies between variables is likely to be huge. This paper is about a systematic study of the “variable groupings” problem in MTS. In particular, we investigate different methods of utilizing the information regarding correlations among MTS variables. This type of method does not appear to have been studied before. In all, 15 methods are suggested and applied to six datasets where there are identifiable mixed groupings of MTS variables. This paper describes the general methodology, reports extensive experimental results, and concludes with useful insights on the strength and weakness of this type of grouping metho
A search-based technique for testing from extended finite state machine model
Extended finite state machines (EFSMs), and languages such as state-charts that are similar to EFSMs, are widely used to model state-based systems. When testing from an EFSM M it is common to aim to produce a set of test sequences (input sequences) that satisfies a test criterion that relates to the transition paths (TPs) of M that are executed by the test sequences. For example, we might require that the set of TPs triggered includes all of the transitions of M. One approach to generating such a set of test sequences is to split the problem into two stages: choosing a set of TPs that achieves the test criterion and then producing test sequences to trigger these TPs. However, the EFSM may contain infeasible TPs and the problem of generating a test sequence to trigger a given feasible TP (FTP) is generally uncomputable. In this paper we present a search-based approach that uses two techniques: (1) A TP fitness metric based on our previous work that estimates the feasibility of a given transition path; and (2) A fitness function to guide the search for a test sequence to trigger a given FTP. We evaluated our approach on five EFSMs: A simple in-flight safety system; a class II transport protocol; a lift system; an ATM; and the Inres initiator. In the experiments the proposed approach successfully tested approximately 96.75 % of the transitions and the proposed test sequence generation technique triggered all of the generated FTPs
Generating feasible transition paths for testing from an extended finite state machine (EFSM)
The problem of testing from an extended finite state machine (EFSM) can be expressed in terms of finding suitable paths through the EFSM and then deriving test data to follow the paths. A chosen path may be infeasible and so it is desirable to have methods that can direct the search for appropriate paths through the EFSM towards those that are likely to be feasible. However, generating feasible transition paths (FTPs) for model based testing is a challenging task and is an open research problem. This paper introduces a novel fitness metric that analyzes data flow dependence among the actions and conditions of the transitions in order to estimate the feasibility of a transition path. The proposed fitness metric is evaluated by being used in a genetic algorithm to guide the search for FTPs
Learning short multivariate time series models through evolutionary and sparse matrix computation
Multivariate time series (MTS) data are widely available in different fields including medicine, finance, bioinformatics, science and engineering. Modelling MTS data accurately is important for many decision making activities. One area that has been largely overlooked so far is the particular type of time series where the data set consists of a large number of variables but with a small number of observations. In this paper we describe the development of a novel computational method based on Natural Computation and sparse matrices that bypasses the size restrictions of traditional statistical MTS methods, makes no distribution assumptions, and also locates the associated parameters. Extensive results are presented, where the proposed method is compared with both traditional statistical and heuristic search techniques and evaluated on a number of criteria. The results have implications for a wide range of applications involving the learning of short MTS models
A search-based approach for automatic test generation from extended finite state machine (EFSM)
The extended finite state machine is a powerful model that can capture almost all the aspects of a system. However, testing from an EFSM is yet a challenging task due to two main problems: path feasibility and path test data generation. Although optimization algorithms are efficient, their applications to EFSM testing have received very little attention. The aim of this paper is to develop a novel approach that utilizes optimization algorithms to test from EFSM models
Automatic generation of test sequences form EFSM models using evolutionary algorithms
Automated test data generation through evolutionary testing (ET) is a topic of interest to the software engineering community. While there are many ET-based techniques for automatically generating test data from code, the problem of generating test data from an extended finite state machine (EFSMs) is more complex and has received little attention. In this paper, we introduce a novel approach that addresses the problem of generating input test sequences that trigger given feasible paths in an EFSM model by employing an ET-based technique. The proposed approach expresses the problem as a search for input parameters to be applied to a set of functions to be called sequentially. In order to apply ET-based technique, a new fitness function is introduced to cope with the case when a test target involves calls to a set of transitions sequentially. We evaluate our approach empirically using five sets of randomly generated paths through two EFSM case studies: INRES and class 2 transport protocols. In the experiments, we apply two search techniques: a random and an ET-based which utilizes our new fitness function. Experimental results show that the proposed approach produces input test sequences that trigger all the feasible paths used with a success rate of 100%, however, the random technique failed in most cases with a success rate of 20.8%
- …