5,623 research outputs found
Scaling forces to asteroid surfaces: The role of cohesion
The scaling of physical forces to the extremely low ambient gravitational
acceleration regimes found on the surfaces of small asteroids is performed.
Resulting from this, it is found that van der Waals cohesive forces between
regolith grains on asteroid surfaces should be a dominant force and compete
with particle weights and be greater, in general, than electrostatic and solar
radiation pressure forces. Based on this scaling, we interpret previous
experiments performed on cohesive powders in the terrestrial environment as
being relevant for the understanding of processes on asteroid surfaces. The
implications of these terrestrial experiments for interpreting observations of
asteroid surfaces and macro-porosity are considered, and yield interpretations
that differ from previously assumed processes for these environments. Based on
this understanding, we propose a new model for the end state of small, rapidly
rotating asteroids which allows them to be comprised of relatively fine
regolith grains held together by van der Waals cohesive forces.Comment: 54 pages, 7 figure
A computer-aided telescope pointing system utilizing a video star tracker
The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics
Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms
The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980
Diammonium biphenyl-4,4′-disulfonate
In the title salt, 2NH4
+·C12H8O6S2
2−, the dianion has crystallographic inversion symmetry. A three-dimensional framework is formed from primary hydrogen-bonded sheet structures comprising ammonium N—H⋯Osulfonate interactions and is linked peripherally through the biphenyl residues of the anions. This open framework has 43 Å3 solvent-accessible voids
X-ray diffraction from shock-loaded polycrystals
X-ray diffraction was demonstrated from shock-compressed polycrystalline
metal on nanosecond time scales. Laser ablation was used to induce shock waves
in polycrystalline foils of Be, 25 to 125 microns thick. A second laser pulse
was used to generate a plasma x-ray source by irradiation of a Ti foil. The
x-ray source was collimated to produce a beam of controllable diameter, and the
beam was directed at the Be sample. X-rays were diffracted from the sample, and
detected using films and x-ray streak cameras. The diffraction angle was
observed to change with shock pressure. The diffraction angles were consistent
with the uniaxial (elastic) and isotropic (plastic) compressions expected for
the loading conditions used. Polycrystalline diffraction will be used to
measure the response of the crystal lattice to high shock pressures and through
phase changes
Time-Resolved X-Ray Diffraction Investigation of Superheating-Melting of Crystals under Ultrafast Heating
The maximum superheating of a solid prior to melting depends on the effective dimensionless nucleation energy barrier, heterogeneities such as free surfaces and defects, and heating rates. Superheating is rarely achieved with conventional slow heating due to the dominant effect of heterogeneous nucleation. In present work, we investigate the superheating-melting behavior of crystals utilizing ultrafast heating techniques such as exploding wire and laser irradiation, and diagnostics such as time-resolved X-ray diffraction combined with simultaneous measurements on voltage and current (for exploding wire) and particle velocity (for laser irradiation). Experimental designs and preliminary results are presented
On the Properties of Plastic Ablators in Laser-Driven Material Dynamics Experiments
Radiation hydrodynamics simulations were used to study the effect of plastic
ablators in laser-driven shock experiments. The sensitivity to composition and
equation of state was found to be 5-10% in ablation pressure. As was found for
metals, a laser pulse of constant irradiance gave a pressure history which
decreased by several percent per nanosecond. The pressure history could be made
more constant by adjusting the irradiance history. The impedance mismatch with
the sample gave an increase o(100%) in the pressure transmitted into the
sample, for a reduction of several tens of percent in the duration of the peak
load applied to the sample, and structured the release history by adding a
release step to a pressure close to the ablation pressure. Algebraic relations
were found between the laser pulse duration, the ablator thickness, and the
duration of the peak pressure applied to the sample, involving quantities
calculated from the equations of state of the ablator and sample using shock
dynamics.Comment: Typos fixe
Friction and wear of human hair fibres
An experimental study of the tribological properties of hair fibres is reported, and the effect of surface treatment on the evolution of friction and wear during sliding. Specifically, orthogonally crossed fibre/fibre contacts under a compressive normal load over a series of 10,000 cycle studies are investigated. Reciprocating sliding at a velocity of 0.4 mm/s−1, over a track length of 0.8 mm, was performed at 18oC and 40-50% relative humidity. Hair fibres retaining their natural sebum were studied, as well as those stripped of their sebum via hexane cleaning, and hair fibres conditioned using a commercially available product. Surface topography modifications resulting from wear were imaged using scanning electron microscopy and quantified using white light interferometry. Hair fibres that presented sebum or conditioned product at the fibre/fibre junction exhibited initial coefficients of friction at least 25% lower than those that were cleaned with hexane. Coefficients of friction were observed to depend on the directionality of sliding for hexane cleaned hair fibres after sufficient wear cycles that cuticle lifting was present, typically on the order 1,000 cycles. Cuticle flattening was observed for fibre/fibre junctions exposed to 10 mN compressive normal loads, whereas loads of 100 mN introduced substantial cuticle wear and fibre damage
Domain Coarsening in Systems Far from Equilibrium
The growth of domains of stripes evolving from random initial conditions is
studied in numerical simulations of models of systems far from equilibrium such
as Rayleigh-Benard convection. The scaling of the size of the domains deduced
from the inverse width of the Fourier spectrum is studied for both potential
and nonpotential models. The morphology of the domains and the defect
structures are however quite different in the two cases, and evidence is
presented for a second length scale in the nonpotential case.Comment: 11 pages, RevTeX; 3 uufiles encoded postscript figures appende
Perceived age discrimination across age in Europe: from an ageing society to a society for all ages
Ageism is recognized as a significant obstacle to older people's well-being, but age discrimination against younger people has attracted less attention. We investigate levels of perceived age discrimination across early to late adulthood, using data from the European Social Survey (ESS), collected in 29 countries (N = 56,272). We test for approximate measurement invariance across countries. We use local structural equation modeling as well as moderated nonlinear factor analysis to test for measurement invariance across age as a continuous variable. Using models that account for the moderate degree of noninvariance, we find that younger people report experiencing the highest levels of age discrimination. We also find that national context substantially affects levels of ageism experienced among older respondents. The evidence highlights that more research is needed to address ageism in youth and across the life span, not just old adulthood. It also highlights the need to consider factors that differently contribute to forms of ageism experienced by people at different life stages and ages.info:eu-repo/semantics/acceptedVersio
- …